SOASTA CloudTest Custom Sending Via Java

Custom Sending Via Java

CLOUATESE VETSION ...ttt ettt ettt et ettt sh e et e sat e et e e sbeeeabeesabeenbeesneeenneas 2
INELOAUCTION ...ttt et e b e sttt e st e esaeeeneeas 2
CUSLOM MOAUIES ...ttt ettt e st eeeeas 2
Implementing custom “Messages” USING JAVA.....cccueeerueeervieeriieeieeeeeeeeeeereeeeaeeesaee e 2
25 €21 111 o) (SRS USRS 3

Revision 1, August 13, 2013 Page 1

SOASTA CloudTest Custom Sending Via Java

CloudTest version

This document applies to CloudTest build 6592 and later.

Introduction

This document contains an example of how to use custom Java code to implement a
custom “Message” in CloudTest. Your license must have “Custom Modules” enabled in
order to do this.

You can use custom Java code to take the place of a “Message” in a Clip. Although
typically such Java code would do some sort of sending and receiving, perhaps using a
protocol and/or communication method not currently supported by CloudTest, the Java
code can do anything that Java can do — it doesn’t necessarily have to “send” or
“receive”.

The Java operations can be represented in the Result as if they were standard Messages in
the Clip and can be included in the statistics as if they were a standard Message. Java
operations can be mixed in with regular Messages (or any other standard item) in a Clip.

Custom Modules

A “Custom Module” is a Java jar that has been imported as an object into the CloudTest
Repository. Once the Custom Module is created, it can be attached to Scripts (in the
CloudTest Script editor) and then the JavaScript inside those Scripts can create Java
objects that reside in the attached Custom Modules and call methods on those Java
objects.

The Java code in Custom Modules can be used for any purpose, for example to do
custom validations, custom formatting of data to be sent, custom parsing of data received,
or any computation or processing that either cannot be done in JavaScript, is better done
in Java, or for which some useful standard Java library already exists.

Note that security is applied that prevents the Java code from reading or writing to the
server’s disk, modifying Java security properties, and things of that nature.

Implementing custom “Messages” using Java

In this document, we’re going to discuss using Java code in Custom Modules specifically
for the purpose of implementing a custom “Message”.

These custom “Messages” do not reside as separate objects in the Clip — they are
implemented by code within CloudTest Scripts.

There are two distinct and independent parts to implementing a custom “Message”.

First, as discussed above, Custom Modules can be used invoke Java code for any
purpose. In this case, the Java code would be invoked to do whatever operations are
required to implement the “Message” (typically some sort of “sending” and “receiving”).
Note that it is not required that a single Java call be made — the Script could make a series
of Java calls in order to implement the operation.

Revision 1, August 13, 2013 Page 2

SOASTA CloudTest Custom Sending Via Java

After the Java code has been executed, although the operation itself has been performed,
CloudTest at this point has no knowledge that a custom “Message” has been executed.

The second part of the procedure involves informing CloudTest of the “Message”, what
was sent and received, and the statistics. This is done by calling the
“recordActionCompletion” method on the “Result” object. This causes the
information to be recorded into the current Result as if a regular Message had been
executed.

The “recordactionCompletion” method is described here:
http://cdn.soasta.com/productresource/download/jsDoc/latest/symbols/Result.html

Executing the Java code to perform the operation and recording the result of the operation
are two independent operations performed by the Script. A Script can record as many
simulated custom “Messages” as it likes, even if they don’t necessarily correspond to any
actual sending and receiving operations (although it is not clear when that would be
useful!).

Typically, a Script would execute the Java code to implement the operation, which would
return information about what happened to the Script (including statistics), and then the
Script would record that information into the Result.

A Script is not limited to only one custom “Message”; it can do as many operations as it
needs to. Therefore, a single Script could generate many custom “Messages”.

Example

The following example shows the basic outline of implementing a custom “Message” via
Java.

First, we need some Java code to implement the actual operation. In this example there
are two Java classes:

* The “ExampleSender” class.

This class has a single method, “sendsomething”, that implements the
send/receive operation. In our example, we just have a “Thread.sleep()” call as
a placeholder for where the actual send/receive operation takes place. Naturally
what happens there is implementation-specific.

The input is a String to be sent, and the output is an “ExampleSenderOutput”
object that contains all of the information to be returned to the calling Script.
Naturally the inputs that are actually needed will be implementation-specific.

* The “ExampleSenderoutput’ class.
This class contains the information that is returned to the calling Script.

The above classes are compiled into a Java jar, which is then imported into the CloudTest
Repository as a Custom Module named “ExampleSender”. You may use any external
tool you desire to compile the Java code and create the jar.

Revision 1, August 13, 2013 Page 3

SOASTA CloudTest

The “ExampleSender” class:

package org.example;
import org.example.ExampleSenderQutput;

public class ExampleSender
{

public ExampleSender()

{

}

Custom Sending Via Java

public ExampleSenderOutput sendSomething(String textToSend) throws Throwable

{

Thread.sleep(3000);

// Insert code to do the actual sending here.

ExampleSenderOutput out = new ExampleSenderOutput();

out.m_operation = "MyOperation";

out.m_url = "http://somewhere.org/something";

out.m_completionType = "Success";
out.m_failureText = null;
out.m_validationPassed = true;
out.m_textSent = textToSend;

out.m_textReceived = "Received text here";

out.m_deltaFromScheduledStart = 0;
out.m_duration = 1234;

out.m_bytesSent = textToSend.length();

out.m_bytesReceived = 321;
out.m_totalPortRetryCount = 0;
out.m_totalPortRetryTime = 0;
out.m_connectionEstablishTime = 100;
out.m_sendTime = 777;
out.m_receiveTime = 555;
out.m_totalTime = 3000;

out.m_ttfb = 5;

out.m_ttlb = 2000;
out.m_dnsLookupDuration = 2;
out.m_waitForConnectionPoolTime = 3;

return out;

Revision 1, August 13, 2013

Page 4

SOASTA CloudTest

The “ExampleSenderoOutput” class:

backage org.example;

public class ExampleSenderQOutput

{
public
public
public
public
public
public
public

public
public
public
public
public
public
public
public
public
public
public
public
public
public

String m_operation;

String m_url;

String m_completionType;
String m_failureText;
boolean m_validationPassed;
String m_textSent;

String m_textReceived;

long m_deltaFromScheduledStart;
long m_duration;

long m_bytesSent;

long m_bytesReceived;

long m_totalPortRetryCount;
long m_totalPortRetryTime;

long m_connectionEstablishTime;
long m_sendTime;

long m_receiveTime;

long m_totalTime;

long m_ttfb;

long m_ttlb;

long m_dnsLookupDuration;

long m_waitForConnectionPoolTime;

Revision 1, August 13, 2013

Custom Sending Via Java

Page 5

SOASTA CloudTest Custom Sending Via Java

Next, we’ll create the CloudTest Script that calls the Java code and records what
happened into the Result. We’ll call this Script “CustomModuleExampleScript’:

CONOWUVI A WN -

// Import the Java code from the Custom Module.
importPackage(org.example);

// Create the Java object and call it to do the sending.
var exampleSender = new ExampleSender();
var exampleSenderOutput = exampleSender.sendSomething("Some text to send");

// Next we are going build the representation of what happened in the way
// that we want it to appear in the Result.

// Create a simulated Target.

var pretendTarget = new Object();

pretendTarget.name = "My Target";

pretendTarget.repositoryPath = "/Some folder";
pretendTarget.repositoryName = "My pretend Repository Target";

// Create a simulated "action" (Message), using the information and

// statistics returned from the Java call.

var pretendAction = new Object();

pretendAction.name = "My action";

pretendAction.repeatIndex = -1;

pretendAction.operation = exampleSenderQutput.m_operation;

pretendAction.url = exampleSenderOutput.m_url;

pretendAction.failureText = exampleSenderOutput.m_failureText;
pretendAction.validationPassed = exampleSenderQOutput.m_validationPasses;
pretendAction.textSent = exampleSenderOutput.m_textSent;

pretendAction.textReceived = exampleSenderOutput.m_textReceived;
pretendAction.duration = exampleSenderQOutput.m_duration;

pretendAction.completionType = exampleSenderQutput.m_completionType;
pretendAction.deltaFromScheduledStart = exampleSenderOutput.m_deltaFromScheduledStart;
pretendAction.bytesSent = exampleSenderOutput.m_bytesSent;

pretendAction.bytesReceived = exampleSenderOutput.m_bytesReceived;
pretendAction.totalPortRetryCount = exampleSenderQutput.m_totalPortRetryCount;
pretendAction.connectionEstablishTime = exampleSenderOutput.m_connectionEstablishTime;
pretendAction.sendTime = exampleSenderQutput.m_sendTime;

pretendAction.receiveTime = exampleSenderQutput.m_receiveTime;

pretendAction.totalTime = exampleSenderQutput.m_totalTime;

pretendAction.ttfb = exampleSenderQutput.m_ttfb;

pretendAction.ttlb = exampleSenderQutput.m_ttlb;

pretendAction.dnsLookupDuration = exampleSenderQOutput.m_dnsLookupDuration;
pretendAction.waitForConnectionPoolTime = exampleSenderOutput.m_waitForConnectionPoolTime;

// Record the action in the Result.
Scontext.result.recordActionCompletion(pretendTarget, pretendAction);

Note that this Script has the Custom Module attached:

Q-
// Import the Java code from the Custom Module. Custom Modules:
importPackage(org.example);

BNV A WN

ad | 2 |4%] Custom Modules L] Script API

5] ExampleSender X

// Create the Java object and call it to do the sending.
var exampleSender = new ExampleSender(); =F Add Custom Modules
var exampleSenderOutput = exampleSender.sendSomething("Some text to send");

// Next we are going build the representation of what happened in the way

For a description of all of the information that can be passed to the
“recordActionCompletion” method, refer to the link provided previously.

Revision 1, August 13, 2013 Page 6

SOASTA CloudTest Custom Sending Via Java

An alternative approach for this Script would be to have the “sendsomething” method
return an object that exactly matches the members expected for the “action” parameter of
the “recordactionCompletion” call. In that case, the returned object could be passed
directly to the “recordactionCompletion” call without the need for JavaScript to
transfer the values. Which approach is best will probably depend upon the individual
situation.

Finally, we’ll place the Script into a Clip called “CustomModuleExampleClip, and in turn
place that Clip into a Composition named “CustomModuleExampleComposition”. Thus,
we end up with the following objects in CloudTest:

v || CustomModuleExample
lgd CustomModuleExampleClip
> B% CustomModuleExampleComposition
£) CustomModuleExampleScript
%, ExampleSender

Revision 1, August 13, 2013 Page 7

SOASTA CloudTest

Custom Sending Via Java

When the Composition plays, it produces the following Result:

Result Details A X
Element Status Element Type Operation
Al Al I
RO cE Chstonios ieEsapleComesiiion creete on) | &/ Completed - With No Errors | Total Components: 7 Total Messages and Actions: 2 Error Components: 0 Jump to now
7 £ Band 1
v W) Track 1
¥ | customModuleExampleClip
© My Target
O customModuleExampleScript
Band1 » Track1 » CustomModuleExampleClip » My action
) »

Input Output | Events List

Event(s)
Event Time Level Event Code Description
9 5113 Info Message: send Action implemented by Script.

Band: “Band 1" Track: “Track 1* Clip: *CustomModuleExampleClip* Message: "My action*
P Details:

10 5113 Verbose Transport: send Sent to Destination "My Target", operation "MyOperation".
Band: "Band 1" Track: “Track 1* Clip: *CustomModuleExampleClip® Target: "My Target" Message: "My action"
P Details:

11 5113 Verbose Transport: sent Response received.
Band: "Band 1" Track: *Track 1 Clip: *CustomModuleExampleClip® Target: "My Target” Message: *My action"
P Details:

12 5113 Info Message: sent Action completed.

Band: "Band 1" Track: “Track 1" Clip: “CustomModuleExampleClip” Message: My action®

13 5114 Statistics Message: stats Statistics.

Band: "Band 1" Track: “Track 1* Clip: “CustomModuleExampleClip” Message: My action®
P Details:

Note that the action has appeared in the Result as if it were a Message, even though there
was no actual Message object in the Clip, and the events for the Message reflect the
information and statistics returned from the Java operation.

Time

5113

5113

5113

5113

5114

Level

Info

Verbose

Verbose

Info

Statistics

Event Code

Message: send

Transport: send

Transport: sent

Message: sent

Message: stats

Description

Action implemented by Script.

Band: "Band 1" Track:

¥ Details:

“Track 1" Clip: "CustomModuleExampleClip" Message: *My action®

Script “"CustomModuleExampleScript”, Clip “CustomModuleExampleClip”, Track "Track 1", Band “"Band 1*

Sent to Destination "My Target", operation "MyOperation".

Band: "Band 1" Track:
¥ Details:

Some text to send

Response received.
Band: "Band 1" Track:
¥ Details:

Received text here

Action completed.
Band: "Band 1" Track:
Statistics.

Band: "Band 1" Track:
¥ Details:

Sent at time: 3,871
Delta from scheduled
Total time: 3,088 ms
Response time: 1,234

“Track 1" Clip: "CustomModuleExampleClip" Target: "My Target® Message: “My action”

“Track 1" Clip: "CustomModuleExampleClip" Target: "My Target® Message: “My action”

“Track 1" Clip: "CustomMeoduleExampleClip" Message: *My action®

“Track 1" Clip: "CustomModuleExampleClip" Message: *My action®

send time: 0 ms

ms

Time to establish connection: 108 ms

Send time: 777 ms
Receive time: 555 ms

Time to first byte: 5 ms

Time to last byte: 2,

008 ns

DNS lockup time: 2 ms

Connection pool wait

Bytes sent: 17
Bytes received: 321

time: 3 ms

Retries due to unavailable local ports: @
Retry time due to unavailable local ports: © ms

Revision 1, August 13, 2013

Page 8

