
SOASTA CloudTest Repeating

Revision 3, October 11, 2011 Build 5060 and later Page 1

Repeating in CloudTest

CloudTest version ... 2	

Introduction ... 2	

Repeat Type .. 2	

Repeat Method .. 2	

Parallel Repeat Renewal ... 3	

Start Interval and Minutes to Ramp .. 3	

Leading Delay ... 4	

Maximum Duration ... 4	

Pacing .. 4	

Inter-repeat delay .. 5	

Access to the repeat process from Scripts ... 6	

Repeat isolation ... 6	

Repeat isolation exception for repeat count one ... 6	

Repeat isolation ramifications for Scripts ... 6	

SOASTA CloudTest Repeating

Revision 3, October 11, 2011 Build 5060 and later Page 2

CloudTest version
This document applies to CloudTest build 5060 and later.

Introduction
Repeating for an item in a Composition or a Clip is specified in a “Repeat” pane at the
bottom of the Composition or Clip Editor. The following example is for a Track in the
Composition Editor.

Repeat Type
There are two basic types of repeating:

• Parallel repeating – All of the repeats play simultaneously in parallel.
• Serial repeating – The repeats play serially, one at a time, one after the other.

Serial repeating is allowed for any item type, although for certain item types (such as
Checkpoints) the repeat count is only permitted to be either zero or one.
Parallel repeating is allowed in the following situations:

• All Tracks.
• Clips in a Timed Band.
• Any item inside a Timed Clip, as long as the item is not inside a Chain or Page.

There are numerous sub-features that apply to repeating. Not all features apply to both
types of repeating.

Repeat Method
The following features control how many times the repeat occurs:

• Fixed
A constant is given at definition time, and the repeat occurs that many times.

• Property: Fixed
A Custom or Global Property is specified, and the repeat occurs as many times as
specified by the value of the property at runtime.

SOASTA CloudTest Repeating

Revision 3, October 11, 2011 Build 5060 and later Page 3

The property value is obtained when repeating starts. Changing the property
value after repeating has started has no effect on the number of repeats. The
Scripting function “endRepeat” can be used to terminate repeating.

• Property: For Each
A Custom or Global Property is specified, and the repeat occurs as many times as
there are array values in the property at runtime, if the property value is an array.
If the property value is a single value, the repeat occurs once. The items inside
each repeat have access to the individual value that the repeat was initiated for
through the Scripting property “forEachValue”.

The list of property values is obtained when repeating starts. Changing the
property value after repeating has started has no effect on the number of repeats.
The Scripting function “endRepeat” can be used to terminate repeating.

• Property: While
A Custom or Global Property is specified, and the repeat continues as long as the
property value evaluates to “true”. Permitted for serial repeating only.

• Continuous
The repeating occurs forever, until explicitly stopped by a Script or there is an
error, or until the Composition is stopped. Permitted for serial repeating only.

Parallel Repeat Renewal
Parallel repeat renewal applies only to parallel repeats and is either on or off. If it is on,
each parallel repeat, when it has completed, will be automatically replaced with a new,
replacement repeat. Thus, the number of instances of the repeating item is kept at the
specified number indefinitely (subject to any ramp-up).

Parallel repeat renewal is the recommended way to implement “Virtual Users”, as it
keeps the number of Virtual Users at the desired level throughout the life of the
Composition.
Although parallel repeat renewal is commonly associated with Tracks, it can be used for
any item that repeats in parallel.

Start Interval and Minutes to Ramp
Start Interval only applies to parallel repeating, and indicates that each parallel repeat is
to be started at an offset from the start of the prior repeat by the specified number of
milliseconds. This is how “ramp-up” is achieved for Tracks (a.k.a. Virtual Users),
although Start Interval can be used for any item that repeats in parallel, not just Tracks.

The Start Interval value can be a constant specified at definition time, or can come from a
Custom or Global Property whose value is used at runtime. If the value comes from a
property, the property value is obtained when repeating starts. Changing the property
value after repeating has started has no effect on the currently-active repeat process.

Minutes to Ramp is a convenience value that can be entered instead of Start Interval. If
Minutes to Ramp is entered, a Start Interval is computed such that the ramp-up lasts for

SOASTA CloudTest Repeating

Revision 3, October 11, 2011 Build 5060 and later Page 4

the specified number of minutes. Entering a value in Minutes to Ramp causes Start
Interval to be recomputed and vice versa.

Leading Delay
Leading Delay specifies that there is to be a delay (in milliseconds) before any of the
repeating starts.
The leading delay value can be a constant specified at definition time, or can come from a
Custom or Global Property whose value is used at runtime.
Leading Delay is often used with Tracks (Virtual Users) to cause ramp-up for a certain
Track to not begin until some point within the Composition play. However, leading
delay can be used for any type of item.

Maximum Duration
Maximum Duration puts an upper limit on the amount of time for which a repeat will
continue repeating, over and above any count or other limitation. The limit is specified in
milliseconds.

Maximum Duration can be specified for serial repeats and parallel repeat renewal only.
The maximum duration value can be a constant specified at definition time, or can come
from a Custom or Global Property whose value is used at runtime. If the value comes
from a property, the property value is obtained when repeating starts. Changing the
property value after repeating has started has no effect on the currently-active repeat
process.

Maximum Duration will not interrupt or stop any individual repeat in the middle of play.
It is examined each time a new individual repeat would ordinarily be started, in order to
determine whether or not to continue repeating.

Pacing
Pacing specifies that delays are to be automatically inserted between repeats when
necessary in order to cause the repeats to occur at a certain rate. The rate is specified in
milliseconds, as in “every n milliseconds”.
Pacing can be specified for serial repeats and parallel repeat renewal only.

There are two basic types of pacing:

• Even
The repeats are to occur at a regular, constant rate.

• Random
The repeats are to occur at a random rate between a minimum and maximum.

SOASTA CloudTest Repeating

Revision 3, October 11, 2011 Build 5060 and later Page 5

The pacing rate information can be specified via constant(s) at definition time, or via
Custom or Global Property values at runtime. Therefore, the possible combinations are:

• Even, constant
Even pacing with a constant rate specified at definition time.

• Even, property
Even pacing with the rate coming from the value of a property at runtime.

• Random, constant
Random pacing with the minimum and maximum rates specified as constants at
definition time.

• Random, property
Random pacing with the minimum and maximum rates coming from Custom or
Global Properties at runtime. The minimum and maximum values are taken from
the properties when repeat first starts; they are not re-evaluated for each delay.

Inter-repeat delay
Inter-repeat delay specifies that there is to be a delay (gap) between the end of one repeat
and the start of the next repeat. It applies to serial repeats and parallel repeat renewal
only.

In the case of serial repeat, the delay occurs between the end of each serial repeat and the
start of the next one.

In the case of parallel repeat renewal, the gap occurs between the end of each parallel
repeat and the replacement (“renewal”) repeat that it is replaced with.

The length of the inter-repeat delay can be specified in the following ways:

• Constant length
A constant number of milliseconds is given at definition time.

• From a property
A Custom or Global Property is specified, and the duration of the delay comes
from the value of the property at runtime. The value is taken from the property
when repeating first starts; it is not re-evaluated for each delay.

• Random length between two constants
A constant minimum and maximum length is specified at definition time, and
each delay will be a random value selected within that range.

• Random length between two property values

Custom or Global Properties are specified for the minimum and maximum
lengths. Each delay will be a random value selected within the range specified by
the property values. The minimum and maximum values are taken from the
properties when repeat first starts; they are not re-evaluated for each delay.

SOASTA CloudTest Repeating

Revision 3, October 11, 2011 Build 5060 and later Page 6

Access to the repeat process from Scripts
Scripts have access to various aspects of the repeat process, and can change some aspects
of the repeat behavior. Refer to the Scripting documentation for further information on
the following Script properties and methods:

• forEachValue
• playNumber
• playNumberBeforeRenewal
• playNumberWithinRenewal
• repeatIndex
• endRepeat()
• clearRepeat()
• setRepeat()

Repeat isolation
When an item repeats, copies are made of the item and its child objects to play for that
repeat. This is to keep each repeat isolated, so that any changes made to the items during
repeat play do not affect other repeats.

For example, suppose a Chain repeated and contained several Messages. For each repeat
of the Chain, copies are made of the Chain and the Messages it contains. Therefore, if
items are modified during a repeat of the Chain, such as changes to Custom Property
values, those changes will only affect that repeat. Other repeats of the Chain and its
contents will not “see” those changes.
However, if a Script were to make a change to a parent of the Chain, all of the repeats of
the Chain will have the same parent, and thus all repeats would see those changes.

Repeat isolation exception for repeat count one
If it becomes time to play an item that repeats, but the repeat count evaluates to one,
meaning that the item is to play only one time, then as an optimization CloudTest does
not make a copy of the item and its children, but instead plays the item directly, as if it
did not repeat.
In this case the values of the Scripting properties “playNumber” and
“repeatCount” will diverge. In this case, “playNumber” will be zero to indicate
the first play of the item, but “repeatCount” will be -1, since the item is not actually
repeating.

Repeat isolation ramifications for Scripts
A Script that traverses the Composition object hierarchy must sometimes be aware of the
copies that are made for repeating items. Depending upon the method used to traverse
the hierarchy, the Script may sometimes encounter the original item while at other times
it may encounter a copy.
Consider the following Clip A, which contains a Group B, which contains a Chain C.
Chain C contains Messages D, E, and F as well as Script G.

SOASTA CloudTest Repeating

Revision 3, October 11, 2011 Build 5060 and later Page 7

Now consider that Chain C repeats. Each repeat play of Chain C will play a copy of
Chain C, thus the hierarchy when a copy of Chain C plays will be:

Clip A and Group B have not been changed. However, a copy of Chain C, Chain C1, has
been created to play. All of the contents of the Chain have been copied as well.

When Script G1 traverses the Composition object hierarchy, which items it encounters
will depend upon the situation. The “current item” properties of the $context object

SOASTA CloudTest Repeating

Revision 3, October 11, 2011 Build 5060 and later Page 8

will refer to the copies. Likewise, any traversals that start out from Script G1 itself or
any contents of Chain C1 will refer to the copies.

However, any traversals that start from the top, such as Clip A or Group B, will always
encounter the original Chain C and contents, not the copy.

To illustrate this, the following table shows examples of various scripting object
hierarchy traversal calls or properties, and what object they would reference, if Script G1
made the reference.

Property or method used in Script G1 Object referenced
$context.currentChain Chain C1
$context.currentGroup Group B
$context.currentItem.parent Chain C1
$context.currentItem.parent.parent Group B
$context.currentItem.parent.parent.children Chain C
$context.currentGroup.children Chain C
$context.currentGroup.getChild(“Chain C”) Chain C
$context.currentChain.children Messages D1, E1, F1,

Script G1
$context.currentChain.parent.children[0].children Messages D, E, F,

Script G
$context.currentChain.getChild(“Message E”) Message E1
$context.currentGroup.getChild(
“Chain C”).getChild(“Message E”)

Message E

$context.currentClip.getItemViaPath(
“Group B/Chain C”)

Chain C

$context.currentClip.getItemViaPath(
“Group B/Chain C/Message D”)

Message D

$context.currentChain.getItemViaPath(
“Message D”)

Message D1

$context.currentChain.getItemViaPath(
“../Chain C/Message D”)

Message D

