
	 CloudTest®	 Performance	 Tes3ng	 Tutorial

 	
	

CloudTest® Performance Testing Tutorial
©2012, SOASTA, Inc. All rights reserved.
The names of actual companies and products mentioned herein may be the trademarks
of their respective companies.
This document is for informational purposes only. SOASTA makes no warranties, express
or implied, as to the information contained within this document.

 	
	

Table of Contents
..Why Performance Testing? 1

...Prerequisites 1
..KnowledgeBase and Tutorials 1

..Planning a Performance Test 2
...Configuring Performance Monitors 3

..Create a New Monitor Server and Monitor 4
...Composing a Performance Test 6

...Creating the Test Clip 6
...Using the Session Template Package Wizard 14

...Scanning a Clip for Values to Parameterize 15
...Replace a Token using the SubString Parser 16
..Inspecting Applied Session Template Values 20

..Creating a User-Defined Validation 24
..Playing and Debugging a Simple Test 25

...Result Details Dashboard 26
..Verifying Test Parameterization 28

..Adding Test Complexity 32
...Applying Virtual Users 32

..Refining General Properties for Performance Testing 33
...Refining Logging Properties for Performance Testing 34

..Save Clip Element and Save Composition Details 35
...Adding Additional Clips and Tracks 36

.....................Using Locations and Servers (CloudTest Standard and CloudTest Pro Users) 37
...Specifying Locations using Composition Editor (Cloud Only) 38

..Using Load Composition to Prepare for Play 39
...Using Play Options with Locations and Preview Mode 40

..Playing the Test 41

...Analyzing Results 42
...Adding a Monitor Widget to a Dashboard 42

..Debugging a Test 43
...Tuning Performance Tests 43

...Comparing Multiple Results 43

 i
	

...Refining Your Test 45

 ii
	

1

Why Performance Testing?
As soon as a load test fails, it becomes a performance test. SOASTA CloudTest supports
HTTP(S) (message) and WebUI/Ajax (browser) recording, as well as SOAP/REST web
service connectivity. Performance testing can involve all three of these. Performance
testing is diagnostic and iterative, and answers the following questions:
• Which components of the application are the causes of a performance bottleneck?
• Can the tester isolate the components of the Web application that are the

bottleneck(s)?
• Can the tester determine throughput levels for each of those components?

Prerequisites
This tutorial focuses on the analytic phases of testing. Within SOASTA CloudTest,
performance testing can be performed in any mode: HTTP message recording, WebUI
browser recording, as well as by other methods. This guide uses the HTTP message
recordings first created in the SOASTA CloudTest Load Test Creation Tutorial as a
starting point. Some material is repeated.
The SOASTA CloudTest Conductor is required for HTTP(S) Recording and also drives the
playback of WebUI/Ajax tests and must be installed before test playback involving either
type.

KnowledgeBase and Tutorials
CloudTest provides two types of recording in support of test creation. This tutorial uses
an existing HTTP(S) recording. CloudTest also provides Browser Recording, which allows
the user to capture user interface actions performed on a given target web site.

o Refer to the Load Test Creation Tutorial and to the CloudLink KnowledgeBase’s
HTTP(S) Recording section for additional HTTP(S) recording instructions.

o Refer to the WebUI Testing Tutorial and to the CloudLink KnowledgeBase’s
Browser Recording section for additional Browser Recording instructions.

	

http://cdn.soasta.com/productresource/download/SOASTA_CloudTest_Load_Test_Creation_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_CloudTest_Load_Test_Creation_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_CloudTest_WebUI_Testing_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_CloudTest_WebUI_Testing_Tutorial.pdf

a

SOASTA Conductor
The SOASTA Conductor is available on the Welcome page in the Downloads area. Refer
to Installing SOASTA Conductor for detailed configuration. This application runs on all
major Operating System platforms: Windows, Linux, and Mac OS X.

Performance Testing Your Web Site
Performance testing can use the exact same test clips as used within other testing
types. However, within the performance context we are not as interested in a Pass/Fail
result or that Pass/Fail result with respect to the load thrown at the application(s) being
tested. Instead, our focus is on measuring a quantifiable result (How long does it take?
and How much CPU/Memory does it take?).
A performance test differs from a load test when it comes to failures. Performance tests
seek measurable data about a given application within established expectations, where
they exist.
While measurable data is important in load testing, the focus is more on exploring limits.
In a performance test, we want to measure how the application responds (at the CPU/
memory level, at the middleware level, and so forth) at various levels of stress.
For example, a simple performance test measures what the CPU performance of the
application (and environment) is when 100 and when 1000 users access a video product
demo at the same time. In the following sections, we will begin with that premise, using
much smaller numbers of virtual users, if any, and cover how to analyze performance
against your own site and applications using SOASTA CloudTest’s analytic tools.
Attacking performance problems in your web application requires a toolset capable of
dealing with the complex infrastructure of a modern web application. This task is
supported using the combination of recording, resource monitoring, and integrated
analytics.

	 	

http://cloudlink.soasta.com/t5/Knowledge-Base/Installing-SOASTA-Conductor/ba-p/492
http://cloudlink.soasta.com/t5/Knowledge-Base/Installing-SOASTA-Conductor/ba-p/492

b

Planning a Performance Test
SOASTA advocates a six-step methodology for creating and executing performance
tests against Web applications and services.
• Planning a Performance Test
• Configuring Performance Monitors
• Composing a Performance Test
• Running a Test
• Analyzing Results
• Tuning a Performance Test

The performance tester’s task is to identify the components of a given application, if any,
that are the performance bottlenecks. In the following sections, we will establish a low-
end performance benchmark using 10 virtual users, and then examine the additional
impact on performance as users are added. If you’re using your own site, you can
choose to increase these numbers, but for a public site, we’ll keep the virtual users
number conservative.
Once performance under stress can be evaluated, changes can be made to improve
component performance and testing is repeated to determine if the changes are
successful. Although your methodology will vary according to your preferences and
purposes, in general the following stages are common to most performance testing:

o Define your test case benchmark
Performance testing involves positive and negative test cases that give insight into the
functionality of the product being tested, usually involving some form of stress or load.
Performance tests can determine the speed and resources required when the product
works, or does not work.

o Define what to measure
SOASTA CloudTest offers unique tools to compare results from different tests that can
demonstrate your performance according to your specifications.

o Set limits (your application or site limits may already be determined by established
application requirements)

If your site is designed to handle a given number of users, you may want to test its
performance at that limit as well as under additional stress--measuring server
performance and response times, for example.

o Network dynamics
The test case may necessarily include users executed from more than one network
location. Contact Technical Support for more information about using multiple locations
in your tests.

	 	

http://cloudlink.soasta.com/t5/Contact-Support/bg-p/ContactSupport
http://cloudlink.soasta.com/t5/Contact-Support/bg-p/ContactSupport

c

Configuring Performance Monitors
Once you’ve decided what to measure, you can begin to setup Monitor Servers and
Monitors that will provide the analytic details to evaluate your test results.
SOASTA CloudTest facilitates monitoring of server- and client-side performance
information during the play of test compositions. A Monitor Server defines the hardware
or software end-point that will be monitored. Within SOASTA CloudTest, a monitor is an
instance of a given Monitor Server. A monitor can use all or a portion of the data offered
by its Monitor Server. Once the monitor is configured, it is available to any test
composition to provide analytic information about resources.
You can monitor System Resources, Application Servers, Databases, as well as the
ColdFusion development framework. You can also monitor JMX and all custom counters
from the Windows Performance Monitor.
During monitor creation or editing, look closely at the resources that you want to monitor
for the given Monitor Server. Refer to the Creating Monitor Server Groups and Creating a
New Monitor topics for full monitor configuration instructions.

	 	

http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-Monitor-Server-Groups/ba-p/184
http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-Monitor-Server-Groups/ba-p/184
http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-a-New-Monitor/ba-p/190
http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-a-New-Monitor/ba-p/190
http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-a-New-Monitor/ba-p/190
http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-a-New-Monitor/ba-p/190

d

Setting up a Monitor Server requires the hostname and authentication credentials.

Create a New Monitor Server and Monitor
1. In SOASTA Central, click Central > Monitoring Server Groups.

2. Click New on the toolbar.
3. The Add a New Monitor Server or Monitor wizard appears. Click Monitor Server,

and then click Next.
4. Enter the Monitor Server name, a brief description, and the host name of the server.
5. Choose which resources on the host to monitor. You can monitor System

Resources, Application Servers, Databases, and ColdFusion development
framework. For example, if you want to monitor a JBoss server, check the App
Servers box.

6. Enter the authentication information about the monitor server.

	 	

e

7. Once a Monitor Server is configured, you should also create a monitor that uses the
newly configured Monitor Server.

To do so, click Next and on the Summary screen check the Create a Monitor for this
Monitor Server, or leave the box unchecked and use the Central > Monitors > New
command to create a monitor at a later time.

8. In either case, click Finish to create the monitor.
TIP: 	 The best approach is to set up the Monitor Server for all its potential

capabilities. Then, each Monitor based on it can be as narrow or
wide-ranging as necessary.

	 	

f

In the following sections, we will show the Response Time (from the site being tested), as
well as CPU percentage of the machine serving SOASTA CloudTest—two very simple
performance metrics—for several tiers of users (for example, 100 and 1000 respectively).
By multi-selecting several different test results, you can easily view performance as the
number of users for a test increases.
IMPORTANT:	 If	 you’re	 only	 practicing,	 we	 recommend	 you	 don’t	 use	 the	 virtual	 user	
and	 multiple	 location	 features	 on	 any	 site	 other	 than	 your	 own.	 ConCiguring	 large	 tests	
against	 public	 web	 sites	 can	 easily	 be	 mistaken	 for	 a	 Denial	 of	 Service	 (DoS)	 attack.	

Composing a Performance Test
A performance test is built using the same SOASTA CloudTest steps as any other test;
however, there are additional steps to select the performance monitors configured in the
previous steps, to refine logging, and to define the way timeouts are handled. In the
following sections, we will use recordings from the sample pages to create a test clip,
add it to a test composition, add virtual users, and then refine test composition
properties for performance.
Once we have a test that is successful with a low-end benchmark, we will increase the
number of virtual users and compare those results to the benchmark results.

Creating the Test Clip
The following exercise uses existing HTTP(S) message recordings created using
Wikipedia. The recordings are converted to the test clip format and can then be opened
in the SOASTA CloudTest Composition Editor, or in cases where additional editing of the
test is preferred, in the SOASTA CloudTest Clip Editor.
You can use any HTTP(S) recording to create your own test using these same steps.
After recording conversion to the test clip format, there are additional performance steps
in the Composition Properties tab.

Note: If you don’t have an HTTP(S) recording to use, refer to Creating an
HTTP(S) Recording.

1. Open the recording that you want to convert to a test clip. To do so, select Central
> HTTP(S) Message Recordings, select the recording and double-click.

2. Once the recording is open, determine if you want to use all of the messages or a
selection of the recorded messages by applying filters before converting.

	 	

http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-an-HTTPS-Recording/ba-p/46
http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-an-HTTPS-Recording/ba-p/46
http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-an-HTTPS-Recording/ba-p/46
http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-an-HTTPS-Recording/ba-p/46

g

o To convert all the messages into the test clip, simply click Convert to a Clip on the
upper-right.

o Otherwise, apply filters, or select the messages you want to convert and click
Convert to a Clip.

In either case, the Create a Test Clip from Recording Wizard appears.
3. Give the test clip a name; select a clip timing mode (Sequenced is the preferred

method for the performance context), and then click Next.
• Sequenced

In a Sequenced clip, CloudTest sends request #1 in a test clip and request
#2 isn’t sent until a response to #1 is returned. This is the default selection
for test clips created in SOASTA CloudTest and the clip type used by most
SOASTA customers.

• Manually Timed

In a Manually Timed clip, you can specify down to the millisecond (ms)
when a specific message is sent. Responses are not required before the
next request is sent.

For Manually Timed clips, an additional option to “Detect and insert bursts”
appears. In the context of recording conversion, "bursting" is a series of
messages that are probably due to a single event. For instance, a web

	 	

h

page that loaded with 17 requests (for images, CSS, JavaScript files).
Bursting isn't applicable for non-manual timing types.

• Evenly Timed

In an Evenly Timed clip, whenever the test clip is resized in the SOASTA
CloudTest Composition Editor, the test clip is re-timed (1 per second, 2 per
second). The default is one message sent per second. Responses are not
required before the next request is sent.

4. Optionally, set a value (or accept the default) in the Insert Think Times tab.

Think times simulate the time that users spend viewing the content of a given page and
help to better simulate those time gaps. Whenever a user-configurable gap is detected a
“think time” will be inserted within the Test Clip. This will be represented by a time delay
clip element in the clip for each “think time”. Think times apply to Sequenced and
Manually timed clips only.

If you wish to apply think times, click on the checkbox labeled “Insert think times”
and set the threshold values. Pauses will automatically be inserted into the
generated clip according to these settings to simulate user think times.

5. In the next step, click the Automatically create missing targets box, and then click
Next.

	 	

i

For new users, the Available Targets list will appear empty and a status
message appears at the bottom of this list to indicate that no matches
(with existing targets) were found.

• If any existing matching targets are detected, they are listed in the Selected
Targets list on the right. If the targets do not exist, they will be created in the
next step.

	 	

j

6. Click Next. The Create New Targets step appears. This step allows new targets to
be reviewed one by one, and individually disabled (if a target is unchecked, the
related target and its messages won't be created).

7. Click Next. The Create Pages step appears.to edit the test clip. For the purposes
of this tutorial, we will continue using Continue next to Go to the Clip Editor.

	 	

k

8. Leave Automatically create groups of Page requests box checked and also check
Mark the first message in the page to dynamically retrieve its resources. Click
Next.

The Create Test Clip step appears with summary information about the new test clip
selections.

	 	

l

In the example below, the clip name to create is Wikipedia Tutorial Scenario clip,
think times are enabled at a three second threshold, timing is sequenced, pages
are disabled, and two targets to create are listed.

9. Click Next. The status indicator appears to track clip creation progress.
10.The wizard creates the clip and then displays the Summary page. Click Go to the

Test Clip Editor to perform additional clip editing tasks, such as user-specific
parameterization.

11.For the purposes of this tutorial, we will continue using Continue next to Go to the
Clip Editor.

Click Continue next to Go to the Composition Editor if you do not wish to edit the
test clip before running your test.

--Or—

Click Continue next to Go to the Clip Editor, if you’d like to edit the test clip before
adding it to a test composition. When you do so, the new test clip is opened in the
editor. In the remaining steps in this section, we will briefly discuss some useful edits
you can make to enhance the readability of your test results.

	 	

m

12.The test clip is opened in the Clip Editor. The pages (and any other clip elements)
are displayed in the center workspace, while the lower panel displays the default
Messages/Actions tab with Available Targets and the Included Targets and
Operations (not shown) lists to the right.

The messages, most of which are within pages in the new test clip, were created
from the recorded messages that were selected for conversion in the steps above,
while delays were calculated from the recorded think times.

	 	

n

• For tests that contain only static requests, such as those without logins,
converted test clips are ready for use in tests as is.

For tests that include unique session data (such as a login that creates a session for a
given site), the dynamic data values must be replaced before the test can succeed.
The additional clip-editing steps below will configure the test clip to extract dynamic
session data, replace it with a custom clip property, and then use that property to
place updated session data into the test at runtime. Since the example test clip
created above includes such data, the clip-editing steps are covered in the following
sections.
13. In the Clip Editor, change to List view to quickly edit messages in this test clip.

Using the Session Template Package Wizard
Now that a test clip has been created from the recording, the next step is to
parameterize those messages that require unique session data.
In this section we will utilize automation techniques via the Session Template Package
Wizard, which creates a re-usable “template” that can be applied to other tests that use
the same values. These steps can also be done manually using the Clip Editor lower
panel.
Parameterization, or correlation, can be achieved by a variety of methods including
SubString parsing, XPath location, by creating a new inline script, or by using an existing
script.

1. Click the Session Template drop-down menu in the top right of the Clip Editor and
then choose the Launch Session Template Package Wizard command.

	 	

o

When you do so, the Session Template Package Wizard appears.

1. First, give the session template a name. For example, Wikipedia Session
Template.

2. Use the Browse button to specify the Soasta.tutorial folder created above as the
location.

3. Leave the Include/Exclude fields all checked. For more information about these
fields, refer to Session Template Packages.

4. Leave the Backup Clip box on the lower left checked. This ensures that the
original test clip will be backed up.

Scanning a Clip for Values to Parameterize
In the following steps, the Clip Scanner will parse the clip in search of matching name/
value pairs.

1. Once ready, click Scan Clip.
The Scan Clip button becomes inactive and the scan begins. After the clip is
scanned, the scan button automatically becomes re-enabled if the Include or Exclude
options are changed. Scan progress is indicated by the green progress bar. Rows
begin to appear as the scan progresses.

	 	

http://www.soasta.com/findouthow/testediting/using_session_template_packages.html
http://www.soasta.com/findouthow/testediting/using_session_template_packages.html

p

Once the scan is complete, the results are listed in the table below. Additionally, the
green checkmark appears, and the table below is populated with name/value pairs.
Some rows may appear before the scan completes.

Replace a Token using the SubString Parser
When the first test clip was created, we located the specific message that represented
the display of the Wikipedia Log in page in the browser (prior to log in). That message
contained the login token, wpLoginToken, received from Wikipedia, which was first
identified in the recorded response, and then replaced by creating a custom property
and assigning it to the selected token.
With Session Templates, this step is now much easier, and additionally, CloudTest will
automatically replace all occurrences of the token value with the property path, which is
in turn replaced by the actual runtime token when the test is run—without the need to
write any JavaScript.

	 	

q

1. In our example, we will replace the highlighted name below. Locate the row for the
name wpLoginToken.

Note the suggested Value Retrieval Method, which in this case is XPath.
Note: 	 XML Path Language, or XPath, is a method for selection within a

document. Using XPath can be challenging in cases where a URL
frequently changes, since the slightest change to the HTML code for
that URL will render the XPath obsolete. SOASTA recommends using
SubString whenever possible and XPath only as a last resort.

2. Click the Value Retrieval Method drop-down and change it to SubString.

	 	

r

When you do so, the SubString Parser dialog box appears with the token value of
wpName highlighted in orange in the top section.

2. Use the mouse to highlight the entire string to the left of the highlighted token
value and then click the Insert Selected button on the Leading Text row. Be sure
to include the quotation mark before the highlighted text. When you do so, the
selected string is inserted into the Leading Text field as shown below.

3. Scroll to the right in the top section and use the mouse to highlight the entire
string to the right of the highlighted token value and then click the Insert Selected

	 	

s

button on the Trailing Text row. When you do so the selected string is inserted into
the Trailing Text field as shown below.

4. Click the Test button and ensure that the Test Result shown matches that of the
highlighted token value as shown below.

	 	

t

5. Click OK to exit the SubString Parser. Note that the wpLoginToken row is now
checked and that the specified value retrieval method is SubString Parser.

6. In the Session Template Package Wizard, click Apply. The wizard filters the list to
only checked items only and applies those values. The green status bar indicates
progress and once completed, the green checkmark icon appears.

7. Click OK to exit the Session Template Package Wizard.

Inspecting Applied Session Template Values
Now that the wpLoginToken value has had a template applied, let’s take a look at the
test clip to inspect the applied template value.

1. Click the Properties tab in the lower panel of the Clip Editor

The custom property has assumed the name extracted from the Wikipedia site, which
was identified by the SubString Parser steps above.
2. Click the Applied Session Templates & Packages node in the Property Type list.

3. The Wikipedia Tutorial Session Template appears in the Name list on the right.
Click its arrow to expand it.

	 	

u

Note that the session template names correspond to the fields upon which they were
based and also correspond to the automatically created custom clip properties.
4. Click the wpLoginToken item in the expanded session template.

5. Review its Summary details on the far right pane. Note that the retrieval variable
value method, the leading text, and trailing text match the methods and selections
used above.

The Summary identifies the first message from which the value was extracted and
also any subsequent messages to which the value was applied by the use of a
property path (or ISSE).
For messages with applied ISSE values, a property path was used to parameterize a
value. The given path refers to the property that will insert the runtime value into
place during the test. See In Situ Substitute Expressions (ISSE) for more about using
paths to refer to custom or global properties.

	 	

http://soasta.com/findouthow/scripts/in_situ_sub_expressions.html
http://soasta.com/findouthow/scripts/in_situ_sub_expressions.html

v

6. Click Highlight. CloudTest changes the workspace display to show those
messages that the value was extracted from and to which it was applied.

In List view, pages appear as shown below
Note: 	 CloudTest has three collection types: pages, groups, and chains. For

more information about collections, see Viewing Collections.
The HTML Document row for a given page is the CloudTest equivalent of the
Wikipedia page created in the recording above. This row is wider and contains three
checkboxes: Resources (checked), Static (checked), and Dynamic (unchecked).

The first page shown above, index.php, contains the message highlighted in green,
index.php (4). This message is the “HTML Document” (or main message) of its page.
The index.php (4) message, and the wpLoginToken value extracted from it, originated
from the click that opened the Log in page (prior to submitting the log in).
The second page shown above, index.php (1), contains the message highlighted in
yellow, index.php (5). This message is the HTML Document of its page.
The index.php (5) message is a POST message that sends back the user name,
password, and the required wpLoginToken. Without all three the login fails.
7. Double click the POST message in the expanded page to open it in the lower

panel. This message is also the main HTML Document within the page.

	 	

http://www.soasta.com/findouthow/testediting/viewing_collections.html
http://www.soasta.com/findouthow/testediting/viewing_collections.html

w

The message opens in a new tab in the lower panel (e.g. Selected: index.php (5)).
8. Verify that the wizard replaced the login token with the property path for

wpLoginToken (shown below).

	 	

x

9. Once the message has been examined, rename it to Submit Login by selecting
the top node (where the message name appears) and entering the new name.
Renaming individual messages helps to identify them easier in test results.

Creating a User-Defined Validation
CloudTest provides user-defined custom validations. Use the following steps to define a
custom validation that will validate login success in the test clip.

1. Click the message icon for the newly renamed Log in message a second time,
select the Validations node in the list on the left.

2. Click the green arrow in the field on the right to add a user-defined validation.

The Validation form appears. Accept the default value, This validation: validates a
portion of the response body.

	 	

y

3. Set the Response Type to Text and the Match type to Matches glob expression.

4. Enter the Constant Expression, *Login successful*.

5. Click Save in the Clip Editor toolbar.

 Playing and Debugging a Simple Test
As a general guideline, it is best to play and debug a test as components are added. This
simplifies debugging tasks.
Additionally, this type of debugging is done before adding virtual users (covered in the
final sections) and while the test is small enough to be run with the default verbose
logging (e.g General play mode) that best utilizes the Result Details dashboard.
1. Click the Use in Test Composition icon on the Clip Editor toolbar and then select

Open in Test Composition.

The test is added to Track 1 of a composition with the name “Composition for [Name
of Test Clip], which opens in the Composition Editor (in a new tab). For example, the
Composition for Wikipedia Tutorial Scenario clip 1.

	 	

z

Click Save on the Composition Editor toolbar. The Save Composition box appears.
Assign the composition a new name. For example, Wikipedia Tutorial Scenario
composition 1.

2. Click Play on the Composition Editor toolbar. The Composition Editor, Play tab
appears with the default dashboard in display while the test composition plays.
The Result Details dashboard appears with the status Playing.

Result Details Dashboard
The Result Details dashboard helps you determine the cause of errors in your test and
has several methods for navigating through the test results.

	 	

aa

Whenever errors occur, the Result Details widget helps to easily identify both where and
what errors occurred. Select items in either the Cover Flow at the top or the Navigation
tree on the left.

The Navigation Tree view on the left is useful for navigating around multiple clips in a
test composition. Click the arrow for any node to expand or collapse it.

Use the filters to quickly display messages (or browser actions) only (within a single
band, track, test clip, or chain); or, to display errors only.

o Click any object in the Cover Flow at the top to center it and display its request/
response details and play statistics in the panes below.

o Use the scrollbar to browse the Cover Flow (if an item is selected in the
Navigation Tree, the Cover Flow shows only items that pertain to the selection).

o Select any item in either the Navigation Tree or the Cover Flow to show its low-
level details in the Input/Output or Events List tabs on the right.

	 	

bb

o Click the Events List tab to see a sequential, event-by-event list of the given test
result. The Events List displays the full request headers/POST data and response
headers/content in the same view. This list provides the raw response data
including hidden fields.

Verifying Test Parameterization
Login success means that all the above settings and a test without error means, in
general, that the extraction of the wpLoginToken and its runtime replacement worked.
Of course, the remainder of the test must also run without error. In terms of
parameterization, we can verify that:

• Login succeeded (shown above; since no parameterization has been done in
the test as yet we will revisit this issue in the final section below via use of the i
script in combination with virtual users)

	 	

cc

1. With the Result Details Dashboard in display, expand the Navigation Tree until the
POST message is visible in the clip. Once the POST message is in display, select
it to determine whether the login was successful.

Scroll back up in the Response tab and note that a successful message gets the
HTTP response code, 200.

	 	

dd

TIP: While the HTTP 200 response code is desirable, an examination of all
pertinent HTTP requests is still required to define a successful test,
since receiving all HTTP 200 status codes DOES NOT necessarily
mean the test is running properly. Many applications will return an
HTTP 200 status code but really be in a failure state. This is true
because response content can be an error message in some cases.
SOASTA simply highlights HTTP 400 & 500 status codes as “errors”.

• Extraction and replacement of the wpLoginToken worked
2. In the steps above, the Log in message (e.g. the message that loaded the

Wikipedia log in page) contained the wpLoginToken. We can verify that the
substitution worked in the test composition by finding the new token in the
subsequent Submit Login request (as shown below).

• Validation worked
3. With Submit Login still selected, click the Events List tab and scroll down until the

Validation of response body passed event is in display. Click its Details arrow to
display full information for this event.

	 	

ee	 	

ff

Adding Test Complexity
Now that the success of a simple test has been verified, a test of greater complexity can
be built. With one or more parameterized test clips, a performance test simulating many
users can be built quickly using one or more of the methods below.
In this section, we will utilize the test composition created above.

Applying Virtual Users
SOASTA CloudTest uses parallel repeats per track as the basis for generating virtual
users. Parallel repeats fire the track concurrently, or in parallel. Tests of great complexity
can also be built quickly using multiple test clips and virtual users.

IMPORTANT:	 Recording	 from	 a	 host	 is	 fairly	 benign,	 however,	 once	 you	
add	 virtual	 users	 and	 run	 a	 test	 against	 that	 same	 host	 your	
test	 can	 easily	 be	 perceived	 by	 that	 host	 as	 a	 Denial	 of	
Service	 (DoS)	 attack.	 Please	 review	 the	 SOASTA	 Terms	 of	
Service	 before	 setting	 up	 tests	 using	 virtual	 users.	 The	
exmple	 test	 in	 this	 tutorial	 uses	 very	 low	 numbers	 of	 virtual	
users.	 SOASTA	 CloudTest	 Lite	 is	 lmite	 to	 100	 virtual	 users.	
Other	 CloudTest	 editions	 are	 capable	 of	 much	 higher	
numbers	 and	 tests	 of	 great	 complexity	 with	 multiple	 user	
scenarios,	 clips,	 and	 tracks.

Note that The Composition Editor displays the current number of Total Virtual Users at
the top of the Track column.

1. In the Composition Editor, click the blue area on the left labeled Track 1. In the
next step, we will set three parallel repeats.

 Parallel repeating – All of the repeats play simultaneously in parallel. In CloudTest,
a virtual user is counted whenever a parallel repeat is set on a track.
Parallel repeating is allowed only for:

o All Tracks.
o Clips in a Timed Band.
o Any item inside a Timed Clip that is not inside a Chain or Page.

 Serial repeating – The repeats play serially, one at a time, one after the other.
Serial repeating is allowed for any item type, although certain item types (such as
Checkpoints) only permit the repeat count to be either zero or one.

	 	

gg

2. Click the Virtual Users icon in Track 1 and enter 3 into the field that appears.
Leave the test clip on this track at its default, 1.

3. Click Save on the Composition Editor toolbar.

Refining General Properties for Performance Testing
1. With the composition open in the Composition Editor, click the Properties tab in

the lower pane.
2. Select the Composition node in the Property Type list. The composition’s General

Properties are shown on the right.

	 	

hh

3. Click the Play Settings tab. The default verbose settings (e.g. General mode) are
shown below.

4. In the Failure Action drop-down, select Never halt on error, regardless of
component settings. In this test, and subsequent performance tests, we want to
view errors, such as timeouts, without having the test play stop due to them.

5. Click Save on the Composition Editor toolbar before proceeding.

Refining Logging Properties for Performance Testing
CloudTest provides play modes that comprise "recommended" settings for both debug
(General) and load/performance (Load) testing. General play mode provides verbose
logging settings that come at a low overhead in smaller tests. Load play mode omits
verbose logging, but captures information to help identify performance bottlenecks in a
web application.

1. In the Composition Editor, click the Play Mode drop-down and choose Load.

SOASTA CloudTest provides default verbose logging (e.g. General mode) of all its
activities that is quite detailed, and in most cases, provides valuable information for little
cost. For larger tests with 10 virtual users or more, verbose mode may be a lot more
information than is useful for the test.

1. To quickly turn off verbose logging, set Play Mode to “Load.” Load Mode settings
are shown below.

	 	

ii

Example Logging Settings for Performance Testing
If Play Mode doesn’t provide the desired settings, set Custom Mode (or simply change
individual logging settings, which also sets play mode to Custom). SOASTA recommends
the following settings for performance (and load) testing:
1. Save Results and Force Garbage Collection checked.
2. For Loggin, Test Composition, Verbose. is set
3. For all other logging objects, None.
4. Uncheck both Save Clip Element Details and Save Composition Element Details.
5. Click Save in the Composition Editor toolbar after making any changes.

Save Clip Element and Save Composition Details
The Results Service performs a first level of aggregation within the Maestro service, and
optionally, only sends aggregates to the Results Service. This has significant
performance benefits for large tests, as much less data needs to be passed across the
network. However, in the case of a performance test this may not be desirable. Besides
network traffic reduction, testing also shows a large benefit in reduced CPU usage.

1. To take advantage of this feature, simply uncheck the “Save Clip Element Details”
and “Save Composition Element Details” checkboxes in the Composition Editor >
Properties > General tab. Note that these boxes are already unchecked in Load Mode
(as shown above).

	 	

jj

For example, in large tests it is best to turn off details in order to achieve better
overall system performance. Turning off details will result in the Results Details widget
being empty, but most other widgets and charts will work fine using aggregated data
in real time while the test runs. At the very least, be aware of the potential impact of
this setting in performance testing.

Monitoring a Performance Test
Now, as a final step in performance test preparation, we will deploy the performance
monitor(s) we created above in the current test.

1. With the Composition node still selected in the lower panel Properties tab, click
the Monitoring tab.

2. In the Configuring Performance Monitors section above, we create a monitor
called Development Server Instance. Check this or any other monitors you’d like
to run during test execution.

3. Click Save after making changes.

Adding Additional Clips and Tracks
In our example test, so far we have added one test clip with some additional
composition-wide property settings for results, monitors, and with the Save Analysis
Details box unchecked.
The test can be saved and played with these settings. However, in reality a much more
complicated testing scenario is likely and you will likely want or need to edit your test
clips using the Clip Editor via Central > Test Clips.
These are several ways to build a more complex test:

• Create edited test clips using the Clip Editor to add messages, delays,
checkpoints, as well as browser actions, as well as to create chains. For more
information about test clip editing, see the Test Editing section of Findouthow.

• Create more than one test clip from a given recording to create user variation
• Create additional recordings with similar, but not identical paths
• Create duplicates of tracks or different sequences of test clips on tracks

	 	

http://www.soasta.com/findouthow/testassembly
http://www.soasta.com/findouthow/testassembly

kk

If there is only one user case in your scenario (e.g. a user case is usually equated to a
test clip), you can duplicate the existing track. Duplicate the track rather than adding
virtual users to it. This can be useful if you want to play the test from multiple locations
by configuring each track to use a different location.

• Optionally, right-click the highlighted (blue) track area. The context menu
includes commands for Duplicate and Duplicate N times…

• Optionally, add one or more test clips to the test composition by dragging
them from those listed in the Composition Editor sub-pane.

Using Locations and Servers (CloudTest Standard and CloudTest Pro
Users)
Multiple locations can distribute load among servers or geographic locations or
networks. Locations can be assigned
For example, some resources may only be available on certain servers or locations,
requiring that a test connect separately to those resources. Or, the test itself may include
a requirement to access and measure performance using the cloud from specific
geographic locations or networks.

Note: Users without administrative access may only select from pre-
configured resources. You can select server resources, such as
locations, that are configured by your SOASTA CloudTest
Administrator. If the resources you’d like to deploy don’t exist or are
yet to be configured, discuss this with your administrator or with your
SOASTA representative.

Server resources can be selected and set composition-wide or set on a per-
track basis.

	 	

ll

Specifying Locations using Composition Editor (Cloud Only)
Maestro is a test engine, implemented as a massively multi-threaded service, which
executes all or parts of a complex test composition in SOASTA CloudTest.
A single Maestro node is capable of sending and validating responses to thousands of
HTTP messages per second. Multiple Maestros can be combined to each execute parts
of a large test that can scale out to tens and hundreds of thousands of virtual users.
Maestros can be geographically distributed and single test compositions can run
geographically distributed while still producing a single integrated set of test results and
analytics.

	 	

mm

You can specify a Maestro location for a specific track in one of several ways:
1. Click the down arrow in the select control underneath the track name in the left

portion of the timeline. Then click the Maestro server or location that you want
to play that track. Please note that if you have only one Maestro server defined
in your SOASTA Repository, this drop down will not be visible.
• Choosing a particular location means that you want to allow any Maestro at

that location to control the track.
• Choosing “Any Location” means that you do not wish to specify a

preference as to which Maestro will control the playback of the track.

Maestro servers can also be selected from the lower panel of the Composition
Editor by selecting a given track in the Property Explorer.

Using Load Composition to Prepare for Play
For complex tests using multiple server locations, it is useful to load the composition
before pressing Play. To do so, click the Load Composition button (leftmost button
below) on the Composition Editor toolbar.

If the servers fail to start, examine your settings for errors using the Status message and
the Details links on the upper right of the Composition Editor.

	 	

nn

Using Play Options with Locations and Preview Mode
You can change the way a test composition will play by accessing Maestro locations and
servers using the “Play Options” button in the Composition Editor toolbar. Changes will
be in effect for only the current load of this test composition, not for the life of the test
composition.

1. Click the Etc. (…) drop-down menu, and then select Play Options.

The Play Options dialog box appears.

2. Select a location from the Maestro drop-down.
3. Check Preview Mode if you’d like to stage server instances and run through the

test without any messages being sent. Preview mode is useful in staging large
tests that may involve multiple resources.

4. Click OK.

	 	

oo

Playing the Test
1. When ready, click the Play button in the Composition Editor > Edit or > Play tabs.

Note: You can stop a running a test composition in case you’ve decided to
abort it, however, the test composition may not stop immediately
(stop represents a “request” not an “abort”). Closing the Composition
Editor will not stop a running test composition.

The Composition Editor will indicate the test status on the upper right. Once the test
begins to play, switch to the Play tab for runtime results. Up until now, all our work within
Composition Editor has occurred in its Edit tab. SOASTA CloudTest presents test results
within the Composition Editor > Play and > Results tabs.

1. While the test plays, the Composition Editor will switch to the Play tab.
The Play tab displays current results for the last or actively playing composition. The
Play tab also provides buttons for creating dashboards, widgets, and to print the
latest result for the test composition
2. When the test composition has finished playing, the Composition Editor switches

to the Results tab. The Results tab shows all completed results with the most
recent result displayed.

	 	

pp

Analyzing Results
SOASTA CloudTest offers a comprehensive set of analytic widgets that you can place
into one or more dashboards. When you click the Composition Editor > Results tab, the
Analytic Dashboard appears with the Default Functional Dashboard attached by default
and displaying results for this composition. You can duplicate any of the default
dashboards using Central > Dashboards and then right-click, Duplicate.
See Creating a New Dashboard and Adding a Widget to a Dashboard for more
information about configuring the dashboards and widgets associated with your test.

Adding a Monitor Widget to a Dashboard
Monitors can be added to dashboards in the same manner as other widgets. Montiors
can also be viewed for a given time range by selecting Central > Monitors, and then
clicking View Analytics to display a given Monitor in the list in its own window.

	 	

http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-a-New-Dashboard/ba-p/118
http://cloudlink.soasta.com/t5/Knowledge-Base/Creating-a-New-Dashboard/ba-p/118
http://cloudlink.soasta.com/t5/Knowledge-Base/Adding-a-Widget-to-a-Dashboard/ba-p/120
http://cloudlink.soasta.com/t5/Knowledge-Base/Adding-a-Widget-to-a-Dashboard/ba-p/120

qq

Debugging a Test
Debugging your test is an iterative process that identifies errors, and in the context of
performance tests, performance bottlenecks by giving attention to the results.
Although, within the performance context we are not as interested in a Pass/Fail result or
that Pass/Fail result with respect to the load thrown at the application(s) being tested, it
may still be necessary to do some debugging to make those measures as useful as
possible.

Note: Use Failure Action settings such as “Never halt on error…” in the
Composition Editor > General properties to ensure tests run to
completion without the failure that prevents performance measuring
for the overall test.

Usually, debugging will begin with the Result Details widget, which helps you to identify
when and where errors occurred. Result Details helps you determine the cause of errors
in your test by browsing, as well as filtering for errors only.

Tuning Performance Tests
Once you have established a low-end performance benchmark against your own site or
application, ramp up the virtual users and then compare the subsequent test results to
this benchmark.

Comparing Multiple Results
In the final section, we will demonstrate how to compare results from more than one test.

1. In SOASTA Central, click Central > Results.
2. Select two or more test results for your performance test.

3. Right-click (or Control+click) to access the context menu and then select
Compare in Dashboard.

4. When you do so, the Select Dashboard list opens. Select Result Comparison
Dashboard from the list.

5. Mouse over the charts to get comparison information for the basic multi-results.

	 	

rr

6. Toggle the lower-left property pane button to view a list of Multi-Result Dashboard
charts on the left.

	 	

ss

o At 100 versus 1000 users, the performance differences will usually be slight. To
run larger tests against your own site, simply increase the number of virtual users.
If you’re running a test in the cloud, you can also define locations per track
(Locations are configured by your SOASTA administrator).

o The Maximum Response Time by Result did vary far more widely. For a
benchmark test with 100 users, we received 292 ms, while for a 1000 user test it
was 3068 ms.

Refining Your Test
Initial runs of your performance test may include errors (depending on what you’re
testing) that indicate a need to refine that test. In these cases, your internal process may
dictate your next move.
In the event that you’d like to further refine the test itself—we have the following
suggestions.

o Time delays can be added to increase the time before a message is fired. This
can be useful when one or more test clip elements must succeed for the test itself
to pass or where additional loading time is a given for the user.
1. Select the insertion point, then click the Add menu, and then select Add a

Time Delay from the menu to insert the delay.

The new time delay will create some additional time between the previous
message and the selected message.

o Think times (for sequential or manually-timed test clips) and bursts (for manually-
timed test clips only) are both relevant to refining a performance test since they
can either increase gaps in the test (think times) or ratchet the intensity (bursts) of
message sends. This should be done as part of converting a recording to a test
clip (refer to the Creating a Test Clip section at the beginning of this tutorial).

o Default timeouts can be set at the message level using the Clip Editor >
Properties tab. To do so, open a message in the lower panel Message Editor by
double-clicking it.

o Validations can be set to halt the test, either at the test composition level, or by
use of validations at the test clip or message level.

o Checkpoints can be used to force a test to wait for a response. To do so, select
the message or container that contains the message whose response must be
received, and then click the Add menu, and select Add a Checkpoint from the
drop-down menu. This checkpoint will prevent the test from proceeding until the
response is received.

• Socket Read Timeout can be used to manually force a longer timeout for a given
message(s). To do so double-click a message to open its properties in the lower
pane. Click the message name in the list below, and then scroll down until you see
Advanced Settings in Element Info on the right. You can change the default

	 	

tt

timeout for this message in order to prevent a timeout that is creating an error. The
default value is 120000 ms.

o Repeat the above steps for all the test clip elements that are creating errors.
o Save your changes.
o Return to the Composition Editor and run the test again until you reach zero

errors.

	 	

	

SOASTA, Inc.
444 Castro St.

Mountain View, CA 94041
866.344.8766

http://www.soasta.com

