l"'-_f;ﬁ I rr‘.'T;:_r.‘:f‘

by SOASTA

CloudTest Script Guide

SOASTA CloudTest Script Guide
©2013, SOASTA, Inc. All rights reserved.

The names of actual companies and products mentioned herein may be the trademarks of their
respective companies. This document is for informational purposes only. SOASTA makes no
warranties, express or implied, as to the information contained within this document.

Table of Contents

About SOASTA CloUudTest™ SCriplS....iiciiiuiiiiiieniiiiieeniiiiieniiiiienmiisiissiesiessssstssssssssssssssssssnsssssaes 1
LN DT 0§ 1) 0 o) o 10) F PP 1
ADOUL THIS GUI . coeueuueeseereeeseeureeecsseessesseessees e sseeseease s e s ses s bbb s R RS s AR R e e b s 1

QUICK OVEIVIEW.....cuuuuuiiiiiiiiiii s s s s s s s s sssssssssssssssssssssssssssssssssssnes 3
ClOUATEST ATCRITECEUIE ...ceveeeereeeeieceeesses e esseesee e eesse s esses e s bbb bR R s R a s 3
SCripts iN SOASTA CLOUATESE civuurvieerirernesrssssessesssssessssssssesssssssssssssssssssssssssessssssssssssssssssssesssssssssessssssssssssssssssasesssssssssnsans 4

SOASTA CloudTest Object Modelccciiieeiiiiiiniiiiiiiiiciiiniiieiesiiesessnsssssssses 6
LN DT) o 2 €= 3 L) o PP 6
SOASTA ClOUATESE ODJECLS ..ceueureerreueenseeeeeseeseuseessesseessessesssessesssesssssse s sssessessss s ssses s s s esssbssessesssssssse b st sss e sssasessnsans 7
RESUIL ODJECE.couucueueeecereieteesseeset e eeses et es e s s s s R SR SRR AR R 10
Send Hello, WOTLd t0 @ RESULL ..ttt ss s bbb s bt s ns 10
Stop 2@ COMPOSItION fTOIM @ SCIIPL.uiuuriuiiuriereeereererreeree s bssesseese s ssse s es s s s s bsse b s s s s bbbt base st 11

Data Generation SCrPES ..c.iiiiiiiiiiiiicriiiiircrrierr e reeerene e renssssnssssenssssnessssnssssenssssnssssensanans 12
Script 1: Random NUMDET /StriNg GENETATOT ... ereereeseeeeeseesesseessesssessessesssssssssessseesssssssssssssssesssssssssssssssasessssanes 12
Script 2: Generate a Random NUumber of 7 01 8 DIgIts ... sssssssssssssssssssssssssssnss 14
Script 3: Using Properties to Generate Unique Data......coereemrnnenernseseeessesesessesssessessssssssssssessesssesssesnes 14
Script 4: Generate Guaranteed Unique Numbers Based on a TimesStamp.......ooereeneeneeseensesseesesseesseenne 15
Script 5: Generate Current Timestamp in Milliseconds or SECONAS ... 16
Script 6: Generate Current Timestamp in “T” FOIMAt....cooinmissss s 17

Data Seeding SCriPES civuuiiiiiiiiiiiiiiiiiiiiniiiiienieiieneiisienseisttsnsssessessssssssssssssssssssssssssnsssssssnssssssanns 19
Script 1: Single-element Data Array, Choose One RandOmLlycooeeeeernernmeneesneesnsesseesseesseesseessesssessees 19
Script 2: Single-element Data Array, Choose Six RaNdOmIY ... ssessessseessessessessseanes 20
Script 3: Single-element Data Array, Select Unique ValUesoereneeneenneeseeseinecsssesessessessesssssssessessesssssnes 21

Script 4: Single-element Data Array, Select Unique Values — second example........cccoeerenmeereeseenseeneenenneens 23

Script 5: Two-element Data Array, Choose One Record Randomly.......ieessssesens 24
Script 6: Two-element data array, increment through values........oeeneeeneeeneseeseesseeseesseesseeens 25
Script 7: Seed data fTOM URL ..t seesetessseessesse s sssss s esss bbb s bbb s 26
Script 8: Seed Data from URL — SECONA OPLION ... nssssssessssesssssssssssssssssss s ssssssssesssssssssssssns 28
Script 9: Put an Array into @ CliP PTOPEILY .. sssasess 29
EXEraction SCriPtS...cicueiiieiiiiuiiiiniiiiniiiiniiiiniiiieioimmiiiesiiiesseissssrsasisrsssstsssssressssssssssesssssssssssnssssnnses 32
Script 1: Extract from Response Body (HTML) ...cemeeeeersersesssesssssssesssessssesssssssssssssssssessssssssssssesssesens 32
XPath Samples Table 33
Script 2: Extract from Response Body — SUDSEIING ... ssessssssss s ssssssessseseees 34
Script 3: Extract from Response Body (JSON) ... sss 34
Script 4: Extract from ReSPONSE HEAUET ... ssesssessssessessseesseesssssss s sssessssssssssssasssesssssens 35
Script 5: Extracting Data from a MesSage TWO Prior ... ssesessssssssssessssssssssssssssssssssssessssseses 37
Script 6: Extracting and Encoding a VIEWSTATE and EVENTVALIDATION......coonneneenserseeseeseesseneens 38
Script 7: Extracting and Encoding @ VIEWSTATE ... sesesssssssessssssessss s ssssssssssssssssssssesssesens 41
Script 8: Verify Something Exists in a Response before Attempting EXtractioncoeeneenmeeneceseeesneens 43
Script 9: Extract HTTP Status Code from RESPONSEiuereuieereereeseineesseesessesssesssssssssessessssssssssssssssssssssssssssseses 45
Script 10: InfoPath Forms Services 2007 /MOSS variable eXtraction ... 45
Script 11: Find all JPG/PNG ‘IMG SRC’ Links in an HTML RESPONSEvcueeeemreemeerseersersesssessssesssesssessssesseeens 50
Script 12: Extract a Substring Using Regex in JavaSCriPt.. ... eeseeseeseesseessessessessssssessssssesssssesssesseses 52
Validation SCrIPLS ceuuiieeiiieiirieiieieiertiieteeerteerereasereesserensieresserenseraassrenssessnsesenssssensssanssssenssssnnsenans 54
Script 1: Throw an Error If a Specified Value Does Not Exist in the Prior Response........unnenenenesnnens 54
Script 2: Throw an error if a specified value does exist in the Prior reSpoNSse ... 56
Script 3: Throw an Error if a Specified Value Does Not Exist in the Prior Headerccccouoneninncneecninnnes 57
Script 4: Validate If @ String IS NUIMETIC ...t seeeessst s sessse e ssssss s s ssssssssss s ssss s sseas 58
Error Detection and Handling SCriPtS....ccciieiiiieiiiieriiteieiieerteeierensirrneerensieeesserenssseensessnsssrnnsesennes 60
Script 1: St All P1ay COUNES = 1 ..ottt seesseseessesssessesssesssssss s s s s ssse s b s st 60
Script 2: Set Play Count for Subsequent Clip Elements to 0 If an Error [s Detected.......cconunirnnennririrnnens 60

11

Script 3: Stop Current Clip If an Error IS Detected ... sssssssssssssssssssesssssssssssssssnes 61

Script 4: Set All play Counts = 0 if “authid” IS Not returned.......esssssssssss 62
Script 5: Disable Chain If Value Not Found in RESPONSEcovveeeereeereeemeeseesseessesssessessssesssesssessseesseessssssssssssees 64
Script 6: Check for ErrorRedireCt RESPOMNSE ... rieeuceeeereireireeseisetssttssesss et sessss s ess s ssse s s ssssanes 65
Script 7: Compare Response to Message Property and Take Different Actions on Result (Enable
ErrorHandling Chain If ETTOT OCCUTS) . eeeeisessreessesssesssseesssesssssss e sssesssesssssssssssssssssssssssssssssessssssssssssssssassssssans 67
Script 8: Try/CatCh EXAIMPLE ..o ceu e seesseesseeseessessesssess s ssesssess s sssasssessssssssesssesssssssssssssssssssasesanes 70
Target/Hostname ModifiCation SCIPLScccceerrrrrrrrrirrrrrsrsrssssssesssns 71
Script 1: Handle Dynamic HTTP 302 REAITECES....ooereeienreereeserseesstessesseisessesssesssans 71
Script 2: Override a Target's URL for the INStance 0f @ CliP ... sseseessesssessessessseans 73
Script 3: Override a target’s use of HTTP/HTTPS for the instance of a clip ... 73
Script 4: HOSt OVEITide IN HEAAET ..ot ssessssss s sessss s ssss st sssssssesssesssssssssssssssaes 73
MiSCEIlANEOUS SCHIPTS....iiiuiriieiirieereiiereeerteeeereneeernnnerenseerenserensserensssrnsserensessnssssenssssensessnssssensasens 74
Script 1: Stop Test Clips (and Optionally Clip Repeats) via SCript ..ooeenreeneenneineeseeneeeseesesseesseesssssesssesseeanes 74
Script 2: Clear ReSponse from Prior MESSAZEccueeureenmerreesesseesseessessessesssesssssssssssssssssssessssssesssssssssssssssssssssssnes 74
Script 3: RANAOM ThiNK TiMES .. sesssns 75
Script 4: Abort a Script and Consider It an Error with Custom Error TeXt.......eenenensesnseseenseens 76
SCIIPE 5: ENCOAING TEXL w.curieuieeeusienreeseisseiseeseessesseessesssessesssessesssessssssesssssss s esse s sassse s s s sse s s ne bbb et se e pasnb s 76
Script 6: Math Calculations using “ISSE” EXPIreSSIONSoieerneemeensessersesseesessessseseessssssessesssessesssssssessssssesssssnes 77
Script 7: Extract All Links from a GIVen RESPOMNSE ... ssssssssssssssssssssssssssssssssesssssns 78
Script 8: Determine Dates 30 and 31 Days from NOW ... oeeneeneeneesssesseesssessesssessssesssesssesssessssssssssssssssees 79
Script 9: Reading a Clip Property iNt0 @ TEST ... rrerreesesreesesseessesssessessessssssssesssesessssssssssssssessssssessssssssssssssssnes 80
Script 10: Trim Spaces N @ STEING . 80
Script 11: Conditional Logic using Chains and Random NUMDETS.........eeneeeeneernmeeneesseesseesssesssessseesens 80
Script 12: Replace Spaces With PIUS (#) SIZNS .ttt ssessessss e essssssss s s ssssssssssssssssssssanes 81
Script 13: Dynamically Set Chain REPEALS ...ttt ess s sssessssssssesssssssssssanes 81
Script 14: Retrieve the Current COOKie ValUES ... sessssssssssssssssssssssssssssssssssssns 82
Script 15: Replace the Cookie List With @ NeW LiST....cnernereereerseeeseesssesseesssesssesssesssessssesssssssessssssssssssssssees 82

iii

Script 16: Find the Current Cookie and Change ItS Value........enencneensieeseesese e seessesssesenns 82

Script 17: Add a New Cookie t0 the COOKIE LISt ssssssssssssssssssssssssssssss 83
Script 18: Set only the next delay to @ random VAlUE ... sesssesssessssssssessseessesens 83
Script 19: Check for 200 status code; stop clip if NOt fOUN ... 83
SOASTA Extension Referenceccccceveiiiiiiiiiiiiiiiiiiincii s 85
CONTEXE ODJECE (FCONTEXL) covurrererrrrerssressssmsesssssessssssssssssssssssessssessssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssesssssssssssssssssssaness 85
Context Properties. 85
Context Methods 94
CUSLOMPTOPEITIES (SPTOP) crveerrerrrersmeeseesssmssssssesseessssssssesssesssssssssssssssssssssssssessssssssssssssssssssnsssssssssesssssssssssssssessssessssssssssnssas 95
CustomProperty Methods 95
SYSTEMPTOPEITIES (FSYSPIOP) uuurerusresssressseessssessssssssssssssssssssssessssssesssssssessssssssssssssssssssssssessssssssssssessssssesssssssssssssssssssaness 97
System Property Methods 97
System Properties 99
SYSTEM ULHIITIES (SULIL) weuureerurerssreessseeesssssessssesssssesssesssnes 102
System Utilities Methods 102
GlODaIPTOPErties ($ZLODAIPIOP) cueuureeerrerssrreessssesssssessseeessssessssssesssssessssssessssses st ssssessssssessssssesssssessssssssssssssssssessssanes 106
Global Property Methods 106
RESUIL ODJECE ...ttt es s s e s s s R s RS R s R R bbbt 108
Result Properties 108
Result Methods. 108
L0003 00 o Y0 1S3 10 10 o W 0. o) =T o 000 PP 109
Composition Properties 109
Composition Methods 110
BANA ODJECT .. cuueurieeeereireeeeeret ettt esse s s s se s b s R R £ R SR e R R bbbt 112
Band Properties. 112
Band Methods 115
TTACK ottt sttt s bbb s b s eSS AR R £ RS R R R bR 117
Track Properties 117

iv

Track Methods

TaArZEL ODJECL ooureeeereeeeeseeeeeeseesse et ees s s ss s

Target Properties

Target Methods

00 1 o T 0] o) 1ot T

Clip Properties

Clip Methods

04 0T 11 o W0] =T oH OO

Chain Properties.....m

Chain Methods

GIOUP ODJECT .ereeeerreereerseeeeeesseesseesssessesssess s sssessssessessss s sssesssesssssssseess

Group Properties

Group Methods

Transaction ODJECE ... sess

Transaction Properties

Transaction Methods

0 o) [oL O PPN

If Properties.

If Methods

SWILCH ODJECT it sssssssssas

Switch Properties.

Switch Methods

PagE ODJECL ettt seeseeess s s s sras

Page Properties

Page Methods

(08 T=T0d 1 010 0 LA 0 o] =T o TP

Checkpoint Properties

Checkpoint Methods

120

122

128

133

139

141

144

147

150

152

155

158

161

164

167

170

175

178

181

MESSAGE ODJECE ..ucuuieueeeeueeeeeseesseieesseesses s es e s e e s s s s R b s R R R s R R E ARt 184

Message Properties 184
Message Methods 190
BIOWSEIACHON ODJECE..uiuuiurieureueeuseeeeeseeseiecsseessesse s sessessessse e sss bbb s s s e £ s AR bRt 198
Browser Action Properties 198
BrowserAction Methods 201
D] P | 0 o =T o o PP 205
Delay Properties 205
Delay Methods 207
133 93 0100 o ot PP 209
Script Properties 209
Script Methods 212
PrOPEITYLISE ODJECL. e euieeereeereieesseesee et cs et s sse e es s s s R s bbbt 215
PropertylList Properties 215
PropertyList Methods 216
SYSTEMPTIOPEITYLIST ODJECE. ..ottt se s es s s s s bbb s bbb 216
SystemPropertyList Properties 216
SystemPropertyList Methods 217

vi

About SOASTA CloudTest™ Scripts

SOASTA CloudTest is a revolutionary suite of visual software products designed to
automate load, performance, and functional testing for web applications—for use by any
developer, sales engineer, business analyst, or tester.

Via its scripting support, SOASTA CloudTest’s design also includes the ability to access
the underlying message complexity both by the Message Editor and by extension using
JavaScript objects. User created test scenarios can be further enhanced by the use of
scripts. SOASTA CloudTest provides a simple scripting environment to use JavaScript to
traverse and modify the SOASTA CloudTest Object Model.

Scripts can be positioned within Test Clips just like messages and browser actions, and
incorporated into Test Compositions one or many times. All test clips, including any
Scripts they contain, are reusable.

Note: As a convenience, an API reference is included below. However, the
authoritative Script API Reference for CloudTest is generated with
each build and is posted as Script API Reference (Latest Build) on
CloudLink. When in doubt, refer to the CloudLink API Reference as
the final authority.

For a build specific API reference, refer to the Documentation page
and locate your build in the Release Notes list (the build-specific API
Reference is posted for each build in the row that pertains to that
build).

JavaScript Support

SOASTA CloudTest currently supports JavaScript. Mozilla’s “Rhino” embeddable
JavaScript language is used. Since JavaScript is a general language many things not
supported declaratively by SOASTA CloudTest are possible via Scripts.

About This Guide

This Script Guide presents some common, step-by-step procedures for using scripts in
Test Clips as part of Test Compositions. This guide also presents a complete SOASTA
CloudTest scripting reference (see the Reference section at the end of this guide).

http://cdn.soasta.com/productresource/download/jsDoc/latest/index.html
http://cloudlink.soasta.com/t5/Documentation/bg-p/Documentation

Quick Overview

Scripts can play an important role in the efficient use of Test Compositions. The scripts
themselves, like the rest of test elements within SOASTA CloudTest, reside within test
clips, and offer an under-the-hood means of testing complex web sites and applications.

CloudTest Architecture

In SOASTA CloudTest, messages, browser actions, scripts, checkpoints and other
elements are combined into Test Clips that correspond to an individual test case. Test
clips are then combined into multi-track test compositions.

Test messages are built to the schema of the given target service being tested, such as a
web service, web site, or queuing system.

The following terms have specific meaning within the system:

Targets

Targets are defined items in the SOASTA Repository that contain a specification of the
information needed to properly format and send messages to a web service or web
application.

Messages

Modern composite web applications accomplish work by sending and
receiving messages.

Browser Actions

A browser action is any user event that takes places within a web user interface.
Browser actions are particularly important in the context of today’s Rich Internet
Applications (RIAs) based on Ajax. SOASTA CloudTest captures the user’s browser
actions, such as click, type, mouse down, mouse up, mouse over, select, drag and drop,
and submit.

Test Clips

A clip is a collection of messages. SOASTA recommends that clips correspond to the
individual unit test in the test scenario. For example, a set of boundary test cases for a
SOAP "Add Customer" operation in a CRM web service.

e Test Compositions

The composition is the test. A composition contains test clips arranged on tracks and
governed by user-specified sequence and tempo. Compositions are created, revised,
and played within the Composition Editor.

e Scripts
A script specifies a set of actions to be taken at a specific point in the execution of a

test composition. For example, a script that modifies the input data for a message
based upon a set of status codes from the previous message response.

Scripts in SOASTA CloudTest

The Central list > Scripts page L shows currently available scripts.

CloudTest fEE=s (BOATIA Doomteten 20RSIA DOC | Lot SOIA ST

(el |) (K () [enz) L |
£ weloome | name Pam Qnner Crested Last Modifed T
% authid from POST / SOASTA_DOC 0B10/2008 1:56 pm 08110/2008 1:56pm
& Test Compasitons =
or_datect ! S0ASTA_DOC 0B/1072009 2:06 pm 0601012008 2:08 pm
[Testoies SOASTA_DOC 0B/10/2009 2:08 pm 0811002008 219 pm
(@) HTTP(S) Message Reoordings SOASTA_DOC
@ Tamgets BOASTA_DOC
EBOASTA_DOC
(oo soRsth boC
] Dasboarss exiracs_ss_respanse_bocy_HTML_1 ' SOASTA_DOG
extract_from_response_body I BOASTA_DOC
 Library |
SOASTA_DOC 12/28/2008 2:46 pm
(g Ubrary
SOASTA_DOC : 0310912008 08:20 am
By Myllems
= SOASTA_DOC 12/268/2009 1:51 pm
& images SOASTA_DOC 05/18/2009 02:35 am
/ Dratts S0ASTA_DOC
i SOASTA_DOC
B docaied SOASTA_DOC
S0ASTA_DOC
) Giobal Property Lists =
EBOASTA_DOC
¥ Server Resources SOASTA DOC
N v it ancan Jigg Heio Worka Script ' S0ASTA DOC
g Server Instances - Summary & HTTP_Recrrection I SOASTA DOC
o contuctors i InfaPain Forms Services 2007_MOSS varable sxractor | S0ASTA DOC
] vionoting Sener Groups i} InfoPain Forms Services 2007_MOSS vanable sximactior | S0ASTA DOC
EBOASTA_DOC
] venvors ¥
S0ASTA_DOC
7 Actiy S0ASTA_DOC
") Player Slatus - Summary SOASTA_DOC
Ty Player Status - Servers SOASTA_DOC 0B/10/2009 2:22 pm
) Player Sistis - Composiions in Messages : S0ASTA_DOC 09/12/2008 09:16 am
B et o Sariiom Bt S0ASTA_DOC 08/122008 £8:19 am
SOASTA_DOC 08/1212008 09:19 am
1) Recenty Played
o SOASTA DOC 09/1212008 09:20 am
7 Adminisiraten S0RSTA DOC .
g Unare 9 SOASTA_ DOC
Y Legged-On Users i sings_slement_anmay ! S0ASTA DOC 080172009 216 prm 060112008 2:16 pm

Within the context of your Test Clip, a Script is a set of actions to be taken in-between
two elements in the clip.

e Ifyour script doesn’t exist yet, with Central list > Scripts selected, click New. When
you do so, the Script Editor opens with a blank page.

Once a script exists, it can be used within a Test Clip like any other SOASTA CloudTest
object.

1. Toadd a script to a test clip, open an existing clip from the Central list > Test Clips
page or click New to create a new Test Clip. The Clip Editor appears.

2. Once your test clip is open in the Test Clip Editor, click the Scripts tab in the lower
pane and drag-and-drop your clip to add it into the new clip context.

Once your Test Clip(s) includes the necessary elements, including your script(s), you are
ready to build a Test Composition using those test clips.

A Test Composition contains one or more Test Clips that execute when played.

CloudTest EW‘QNW&BUB&C&M "ﬁ‘ECIlnﬁnslrsnsC
el (@) lslel(B]lo]B] [X] [P

Totel Virnual Users [Parallel Repsats)
mlulIIIIIII|||||.||||.||||.|
Awerage User Non Cached 1 (114)

e Use Central list > Test Compositions > New to build a new Test Composition, or
open an existing Test Composition by double-clicking it in the Test Compositions
list.

e Once your Test Composition is open in the Test Composition Editor, locate your
test clip in the list below and then double-click or drag-and-drop it into the
provided workspace.

Script creation can be automated using the Session Template Package Wizard and/or
Session Template Wizard. For more information, refer to the Session Template Packages
and Session Templates topics in Find Out How.

http://soasta.com/findouthow/testediting/using_session_template_packages.html
http://soasta.com/findouthow/testediting/using_session_templates.html

SOASTA CloudTest Object Model

In a web browser, the Document Object Model (DOM) is represented by a tree structure
whose nodes can be navigated and then manipulated by a programmer using scripts.
Unlike the DOM, where added complexity can make locating a specific object in the model
a challenge, the object model within SOASTA CloudTest is relatively simple. As with the
DOM, a programmer can use scripts to manipulate objects.

The SOASTA CloudTest Object Model contains pre-defined JavaScript objects to which
every script has access. Together these objects make up an “object model” that allows
access to the Test Composition and to all of its component parts.

Within this object model, the Test Composition is the root element, while other
Composition objects also have an object in the model.

JavaScript Extensions

The SOASTA CloudTest Object Model is presented via JavaScript extensions that allow
user-defined scripts to access and modify the currently running Test Composition.
Scripts are added as elements within one or more Test Clips within that test composition.

These JavaScript extensions offer an object model variable via ($context), as well as direct
manipulation of properties by variables ($prop, $sysprop, and $globalprop).

Note: SOASTA CloudTest offers three property variables ($prop, $sysprop,
and $globalprop) that simplify setting composition, system, and
global properties.

SOASTA CloudTest Objects

Since scripts are used in the same context in Test Clips as any other element—and Test
Clips are contained by Test Compositions within Tracks—the resulting object model is
fairly simple.

The following objects are contained in the object model and can be accessed in scripts
using the $context variable.

composition

Specifies the current composition. For example,

Scontext.composition.stop ()

A test composition is the root element in the SOASTA CloudTest Object Model and
may contain some or all of the remaining objects.

Properties: Name, Parent, propertyList, systemPropertyList, type, children, index,
nextltem, previousltem

Methods: abort, stop, getChild, and getitemViaPath

currentBand

Specifies the current Band according to context. Null if there is no band.

The band is a container for track, and as a result, everything else in the object
model may be contained within a band. For example,

Scontext.currentBand.getChild ()

Properties: name, parent, propertyList, systemPropertyList, type, children, index,
nextltem, previousltem, REPEAT_TIMING_PARALLEL, REPEAT_TIMING_SERIAL,
REPEAT_TYPE_COUNT_CONSTANT, and REPEAT_DISTRIBUTION_CONSTANT

Methods: getChild, getltemViaPath, clearRepeat, setRepeat

currentTrack

Specifies the current track according to context. A track may contain one or
more clips, which may in turn contain messages, checkpoints, chains, and
scripts. Null if there is no current track.

Properties: name, parent, propertyList, systemPropertyList, type, children, index,
nextltem, previousltem, REPEAT_TIMING_PARALLEL, REPEAT_TIMING_SERIAL,
REPEAT_TYPE_COUNT_CONSTANT, and REPEAT_DISTRIBUTION_CONSTANT

Methods: getChild, getltemViaPath, clearRepeat, setRepeat

currentClip

Specifies the current Test Clip according to context. The test clip may contain
messages, checkpoints, and scripts. Null if there is no current clip.

Properties: name, parent, propertyList, systemPropertyList, type, children, index,

nextltem, previousltem, targets, REPEAT TIMING_PARALLEL, REPEAT TIMING_SERIAL,
REPEAT_TYPE_COUNT_CONSTANT, and REPEAT _DISTRIBUTION_CONSTANT

Methods: getChild, getTarget, getltemViaPath, clearRepeat, setRepeat

currentChain

Specifies the current chain. A chain is a grouping of messages, scripts, or
checkpoints within the currentClip. This grouping may be used to control the
timing of the chain members. Null if there is no current chain.

Properties: name, parent, propertyList, systemPropertyList, type, children, index,
nextltem, previousltem, REPEAT_TIMING_PARALLEL, REPEAT _TIMING_SERIAL,
REPEAT_TYPE_COUNT_CONSTANT, and REPEAT_DISTRIBUTION_CONSTANT

Methods: getChild, getltemViaPath, clearRepeat, setRepeat

currentMessage

Specifies the current message. The message is the basic unit of Test Compositions.
Null if there is no current message.

Properties: name, parent, propertyList, systemPropertyList, type, children, index,
nextltem, previousltem, target, REPEAT_TIMING_PARALLEL, REPEAT_TIMING_SERIAL,
REPEAT _TYPE_COUNT_CONSTANT, REPEAT _DISTRIBUTION_CONSTANT, responseTime,
bytesSentCount, bytesReceivedCount, retryCount, retryTotalTime

Methods: getChild, getltemViaPath, getResponse, clearRepeat, setRepeat,
getMessage, setMessage

currentBrowserAction

Specifies the current Browser Action according to the context in which the current
script is executing. Null if there is no current Browser Action.

Properties: name, parent, propertyList, systemPropertyList, type, children, target,
index, nextltem, previousltem, REPEAT_TIMING_PARALLEL, REPEAT _TIMING_SERIAL,
REPEAT TYPE COUNT_CONSTANT, and REPEAT DISTRIBUTION_CONSTANT

Methods: getChild, getitemViaPath, clearRepeat, setRepeat

e currentCheckpoint

Specifies the current checkpoint. The checkpoint is a way of imposing a
dependency, such as stopping action on whatever comes after it until an expected
response is received.

Properties: name, parent, propertyList, systemPropertyList, type, children, index,
nextltem, previousltem, REPEAT_TIMING_PARALLEL, REPEAT_TIMING_SERIAL,
REPEAT TYPE COUNT_CONSTANT, and REPEAT DISTRIBUTION_CONSTANT

Methods: getChild, getltemViaPath, clearRepeat, setRepeat

e currentScript

Specifies the current script. A script is another term for a script. Null if there is no
current script.

Properties: name, parent, propertylList, systemPropertyList, type, children, index,

nextltem, previousltem, REPEAT_TIMING_PARALLEL, REPEAT _TIMING_SERIAL,
REPEAT_TYPE_COUNT_CONSTANT, and REPEAT _DISTRIBUTION_CONSTANT

Methods: getChild, getltemViaPath, clearRepeat, setRepeat

e currentTarget

Specifies the current target. The target is the URL or destination of messages
within the clip.

Properties: name, parent, propertyList, systemPropertyList, type, children, index,
nextltem, and previousltem

Methods: getChild, getltemViaPath

e currentDelay

Specifies the current delay according to the context in which the current script is
executing. Null if there is no current Delay component.

Properties: name, parent, propertyList, systemPropertyList, type, children, index,
nextltem, previousltem, REPEAT_TIMING_PARALLEL, REPEAT_TIMING_SERIAL,
REPEAT_TYPE_COUNT_CONSTANT, and REPEAT_DISTRIBUTION_CONSTANT

Methods: getChild, getltemViaPath, clearRepeat, setRepeat

Result Object

The Result object is a special case within the SOASTA CloudTest Object Model since
results are a byproduct of “playing” a test composition that are not “parts’ of that
composition. The $context variable includes results just as it does any of the objects that
occur within a composition. For example,

Scontext.result.postMessage ($context.result.LEVEL INFO, "hello, world");

The above line of code uses the postMessage method to write a message to the result for
the current composition.

You can post messages to the result object for the current context using the following
properties: LEVEL_ERROR, LEVEL_STATISTICS, LEVEL_INFO, and LEVEL_VERBOSE.

Send Hello, World to a Result

CloudTest scripts can be quite simple, as the following example demonstrates. Other
scripts within this guide deal with more complex issues such as redirection, or extraction,
encoding, and unencoding.

The following line of code placed into a Test Clip (and subsequently a Test Composition)
provides a quick sense of the power of SOASTA CloudTest Extensions, as well as of the
special status of the Result object within the object model:
Scontext.result.postMessage ($context.result.LEVEL INFO, "hello, world");
Or

Scontext.result.postMessage ($context.result.LEVEL INFO, "hello", "world");
The first line of code posts a text string to the result object for the current composition.
The second line posts the same string as well as a detail message about the execution of
that line as shown below.

B 6453 Info Transition: scmsg hella, world
Band: "Band 1* Track: "Track 1" Clip: "Hello World Clip™ Script: "HelloWorldScript”
9 B454 Info Transition: scmsg hella
Band: "Band 1™ Track: "Track 1" Clip: "Hello Werld Clip™ Script: "Hello\WerldScript”
¥ Details:

world

Results are accessed via Central list > Recently Played and include a variety of
informational postings about played Test Compositions).

SOASTA CloudTest also includes the constants LEVEL_VERBOSE, LEVEL_STATISTICS, and
LEVEL_ERROR. For example,

Scontext.result.postMessage ($context.result.LEVEL VERBOSE, "hello, world
[as 'verbose'l");

Scontext.result.postMessage ($context.result.LEVEL STATISTICS, "hello, world
[as 'statistics']");

Scontext.result.postMessage ($context.result.LEVEL ERROR, "hello, world [as
'error'l") ;

Stop a Composition from a Script
Stopping a composition using a script is a simple, one-line:
$context.composition.stop();

Stopping a composition can be used to conditionally terminate a composition on the
basis of some error.

Data Generation Scripts

This section presents a variety of SOASTA CloudTest data generation scripts. Click the
link for each script below to view it in online. Online scripts can be copied and pasted
directly into the SOASTA CloudTest Script Editor using Central > Scripts. Shorter scripts
are presented inline.

Script 1: Random Number/String Generator

The Random number/string generator script will generate a random number and place it
into a test clip.

Generates a random integer (whole number) contained within the
two extremes (inclusive on lower extreme, exclusive on

Example usage:

var num = "" + generateRandomNumber(1l,4);
This will generate a random number, either 1, 2, or 3
var num = "" + generateRandomNumber(5,8);
* This will generate a random number, either 5, 6 or 7

function generateRandomMumber (lowerExtreme, upperExtreme) {
return Math.floor(Math.random() * (upperExtreme - lowerExtreme) + lowerExtreme);

}

e
* Generates a random string of the given length using alpha-numerics (upper and lower case)
* var ranString = generateRandomString(5);

* This will generate a random string of 5 characters in length, for example: "udG&Z"

!l,l'

function generateRandomString(stringLength) {

var pool = "abecdefghijklmnopgrstuvwxyzABCDEFGHIJELMNOPQRSTUVWXYZ0123456789";

var poolLength = pool.length;

var randomString = [];

for (var ndx = 0; ndx < stringlength; ndx++)

{

randomString[randomString.length] = pool.charkAt(generateRandonNumber (0, poolLength));
}

return randomString.join("");

}

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_1.html

The function to the
right generates a
random integer
(whole number)
contained within
the two extremes
(inclusive on
lower extreme,
exclusive on

upper).

function generateRandomNumber (lowerExtreme, upperExtreme) {
return Math.floor (Math.random() * (upperExtreme - lowerExtreme)
+ lowerExtreme) ;

Fcn‘exaniple, var num = "" + generateRandomNumber (1,4) ;
generate arandom

number, either 1,

2,0r 3:

Generate a var num = "" + generateRandomNumber (5, 8) ;

random number
either 5,6 or 7:

Generate a
random string of
the given length
using alpha-
numerics (upper
and lower case).

var ranString = generateRandomString(5) ;

The next example
generates a
random string of
five characters in
length, such as:
"udG6Z"

function generateRandomString (stringLength) {

var pool =
"abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
var poolLength = pool.length;
var randomString = [];

for (var ndx = 0; ndx < stringLength; ndx++)
randomString [randomString.length] =

pool.charAt (generateRandomNumber (0, poolLength)) ;

return randomString.join("");

Script 2: Generate a Random Number of 7 or 8 Digits

The Random number/string generator with seven-eight characters script will generate a
random number with seven or eight characters and place it into a test clip.

function generateRandomMNumber(lowerExtreme, upperExtreme) {

return Math.floor(Math.random() * [(upperExtreme - lowerExtreme) + lowerExtreme);
}

var num = """ + generateRandomMNumber{1000000,99999999%);
Scontext.result.postMessage(Scontext.result.LEVEL INFO, "Random rUID: " + num);
Sprop.set("MessageClip”, "rUID", num);

Lines 1-3 create a function generateRandomNumber (lowerExtreme, upperExtreme) {

. return Math.floor (Math.random() * (upperExtreme - lowerExtreme)
function to + lowerExtreme) ;
generate a random
number.
Line 5 creates a var num = "" + generateRandomNumber (1000000,99999999) ;

variable, num, to
store the random
number, which
will contain seven
to eight characters.

Lines'743placethe Scontext.result.postMessage ($Scontext.result.LEVEL INFO, "Random
rUID: " + num) ;
random number $prop.set ("MessageClip", "rUID", num);

into the current
test clip context as
a property.

Script 3: Using Properties to Generate Unique Data

This simple script uses established CloudTest system properties to generate unique data:

{$%Sys-Prop:Composition:StartTimeMillis%%}-{%%Sys-Prop:Track:VUNumber%%}-{%%
expr: $context.currentClipIndex %%}

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_2.html

Script 4: Generate Guaranteed Unique Numbers Based on a Timestamp

The Generate guaranteed unique numbers based on a timestamp script will generate

unique numbers based on a timestamp. This script is used with an established System
Property, VUNumber, which corresponds to the number of virtual users in a test

composition.

va

{
}

clipIndex = 0;

if({-1 == elipIndex)

var unigueNumber =

$context.result.postMessage($context.result.LEVEL_ INFO,

$prop.set("MessageClip”,

vus = new Number($context.currentTrack.systemPropertylList.getPropertyValue (" VUNumber"));
startTimeMilis
clipIndex = Scontext.currentClipIndex;

new Date().getTime();

vus+"=-"+startTimeMilis+"-"+clipIndex;

"unigueNumber = "+uniguseNumber);

"userNum", unigueNumber);

Use a System
Property in
conjunction with
this script and
virtual users to
generate a unique
timestamp-based
user number.

var vus = new
Number ($Scontext.currentTrack.systemPropertyList.getPropertyValue
("VUNumber")) ;

var startTimeMilis = new Date () .getTime() ;

var clipIndex = S$context.currentClipIndex;

if (-1 == clipIndex)

clipIndex = 0;

Declare a variable,
uniqueNumber, to
store the number
created in Lines 1-
8 above.

var uniqueNumber = vus+"-"+startTimeMilis+"-"+clipIndex;
//var unigqueNumber = "O";

Post a message to
results and set a
clip property,
userNum, to store
the uniqueNumber
per user.

Scontext.result.postMessage ($Scontext.result.LEVEL INFO,
"uniqueNumber = "+uniqueNumber) ;
Sprop.set ("MessageClip",

"userNum", uniqueNumber) ;

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_29.html

Script 5: Generate Current Timestamp in Milliseconds or Seconds

The Generate current timestamp in milliseconds or seconds script guarantees a
timestamp in milliseconds or seconds:

var startTimeMilis = new Date().getTime();
Scontext.result.postMessage($context.result.LEVEL INFO, "startTimeMilis: "+startTimeMilis);

var startTimeSeconds=startTimeMilis/1000;

startTimeSeconds = h.round(startTimeSeconds);
startTimeSeconds = new String(startTimeSeconds);
Scontext.result.postMessage(Scontext.result.LEVEL INFO, "startTimeSeconds: "+startTimeSeconds);

$prop.set("MessageClip", "timestampSeconds”, startTimeSeconds);

Lines 1-2 declare a | var startTimeMilis = new Date () .getTime() ;

. « Scontext.result.postMessage ($Scontext.result.LEVEL INFO,
variable for “start "startTimeMilis: "+startTimeMilis) ;

time” and gets the
current date/time $prop.set ("MessageClip", "timestampSeconds", startTimeSeconds) ;
stamp in
milliseconds and
then Line 4 posts it
to a message

Lines 3-6 declare a | vVar startTimeSeconds=startTimeMilis/1000;
startTimeSeconds = Math.round(startTimeSeconds) ;
startTimeSeconds = new String(startTimeSeconds) ;

startTimeSeconds, | scontext.result .postMessage (Scontext.result.LEVEL_ INFO,
which equals 1000 "startTimeSeconds: "+startTimeSeconds) ;

variable,

ms and gives it the
necessary math.
Line 7 posts a
message to results.

Finally seta Sprop.set ("MessageClip", "timestampSeconds", startTimeSeconds) ;
)

property for the
custom clip
property and its
value.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_30.html

Script 6: Generate Current Timestamp in “T” Format

The Generate current timestamp in “T” format script creates a timestamp formatted in

the "T" format: Timestamp=2010-04-20T21%3A58%3A23.000Z

var gmtTime = new Da

day =
r hours =
r minutes =
var seconds =

var currentTime = new Date

$context.result.postMessage ($context.result.LEVEL_INFO,
S$context.result.postMessage ($context.result.LEVEL INFO, "
S$context.result.postMessage|$context.result.LEVEL_INFO,

te(currentTime.getTime() + (currentTime.getTimezoneOffset() * 60000));

' + currentTime);
" + gmtTime);

"TimezoneOffset: " + currentTime. getTimezoneOffset());

year = gmtTime.getFullYear()

r month = addZero(gmtTime.getMonth() + 1);
addZero(gmtTime.getDate());
addZero(gmtTime.getHours());
addZero(gmtTime.getMinutes|());
addZero(gmtTime.getSeconds ());

var timestamp encoded = year + "-" + month + "-"+ day + "T" + hours + "%3A" + minutes + "%3A" + seconds + ".000Z"
var timestamp unencoded = year + "-" + month + "-"+ day + "T" + hours + ":" + minutes + ":" + seconds + ".000Z"
Scontext.result.postMessage ($context.result.LEVEL_ INFO, "ti " + timestamp_unencoded);
$context.result.postMessage($context.result.LEVEL INFO, "ti " + timestamp encoded);
wi:lé <'d}]h5'£9 2 " ¢ "0") +on;

}

Ldneilgetsthe var currentTime = new Date ()

time in the current // Convert time to GMT time based on timezone offset

time zone and then | var gmtTime = new Date (currentTime.getTime() +

(currentTime.getTimezoneOffset () * 60000)) ;

Line 8 declares a

variable for the $context.;esult.postMessagg($context.result.LEVEL_INFO,

. . . "currentTime: " + currentTime) ;

time in Greenwich $context.result.postMessage ($context.result.LEVEL INFO,

Mean Time and "gmtTime: " + gmtTime) ;

Scontext.result.postMessage ($context.result.LEVEL INFO,
calculates the "TimezoneOffset: " + currentTime.getTimezoneOffseE());
difference based
on the offset. var year = gmtTime.getFullYear ()

var month = addZero(gmtTime.getMonth() + 1);

Lines 10-13 post var day = addZero (gmtTime.getDate()) ;

h facts t var hours = addZero(gmtTime.getHours()) ;

these facts to var minutes = addZero (gmtTime.getMinutes()) ;

results var seconds = addZero(gmtTime.getSeconds()) ;

Lines 14-19 var timestamp encoded = year + "-" + month + "-"+ day + "T" +
declare variables hours + "$3A" + minutes + "%3A" + seconds + ".000Z"

var timestamp unencoded = year + "-" + month + "-"+ day + "T" +

for each unit of
time descending
from year to
seconds.

hours + ":" + minutes + ":" + geconds + ".000Z"

Scontext.result.postMessage (Scontext.result.LEVEL INFO,
"timestamp unencoded: " + timestamp unencoded) ;

$context.result.postMessage ($context.result.LEVEL_ INFO,
"timestamp encoded: " + timestamp encoded) ;

//Sprop.set ("MessageClip", "timestamp", timestamp) ;
function addZero(n) {
// add a leading zero if time digit only has one digit
return (n <0 || n>9 2 " "0") + n;

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_31.html

Lines 21-30 create
the encoding for
the “T” format.

Data Seeding Scripts

This section presents a variety of SOASTA CloudTest data seeding scripts. Scripts can be
copied and pasted directly into the SOASTA CloudTest Script Editor using Central >
Scripts. Longer scripts have an accompanying link that can be clicked to pop out the full
example script. Shorter scripts are presented inline.

Script 1: Single-element Data Array, Choose One Randomly

The Single-element data array, choose one randomly script creates an array and then
chooses a random value from that array. See also: Using Dynamic Data > Array File.

var oStrings =

[
"PG3032901074056" ,
"PG3052321074056",
"PG3062641074056" ,
"PG3082651074056",
"PG3182821075056",
13

var a = oStrings[Math.floor(oStrings.length * (Math.random()))];

Sprop.set("MessageClip”, "Ecard", a);

Scontext.result.postMessage(Scontext.result.LEVEL INFO, "Ecard: " + a);

First, declareand | V3~ oStrings =

format the array: "PG3032901074056",
"PG3052321074056",
"PG3062641074056",
"PG3082651074056",
"PG31

Next choose an var a = oStrings[Math.floor (oStrings.length * (Math.random()))];
)
element from the

array based on a
random number.

Seta(ﬂn)property Sprop.set ("MessageClip", "PropertyName", a);

to contents of “a” -
the randomly
selected index
value.

ShOVV(jebug Scontext.result.postMessage ($context.result.LEVEL INFO,
. . . "PropertyName: " + a);
information in the

results.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_3.html
http://cloudlink.soasta.com/t5/Knowledge-Base/Using-Dynamic-Data/ba-p/332#array

Script 2: Single-element Data Array, Choose Six Randomly

The Single-element data array, choose six randomly script creates a single-element array,

and then chooses elements randomly from that array.

var oStrings =
[
"PG3032901074056",
"PE3052321074056",
"PG3062641074056",
"PGE3I08B2651074056",
"PGE3182B21075056",
| H
var a = oStrings[Math.floor(oStrings.length #* (Math.random{)))]:;
var b = oStrings[Math.floor(oStrings.length * (Math.random()))]:;
var ¢ = oStrings[Math.floor(oStrings.length * (Math.random()))]1;
var d = oStrings[Math.floor(osStrings.length * (Math.random()))];
var @ = oStrings[Math.floor(oStrings.length #* (Math.random{)))];
var £ = oStrings[Math.floor(oStrings.length #* (Math.random{)})))]:;
Sprop.set("MessageClip"; "ecardl”; a);
Sprop.set("MessageClip”, "ecard2”, b);
Sprop.set("MessageClip"”, "ecard3", c);
Sprop.set("MessageClip"”, "ecard4", d);
Sprop.set("MessageClip", "ecard5", e);
Sprop.set("MessageClip"; "ecard6"; £);
Scontext.result.postMessage(Scontext.result.LEVEL_INFO, "ecard: " + a);
Scontext.result.postMessage($context.result.LEVEL _INFO, "ecard: " + b);
Scontext.result.postMessage(Scontext.result.LEVEL INFO, "ecard: " + ©);
Scontext.result.postMessage(Scontext.result.LEVEL INFO, "ecard: " + d);
Scontext.result.postMessage(Scontext.result.LEVEL INFO, "ecard: " + e);
Scontext.result.postMessage(Scontext.result.LEVEL_INFO, “"ecard: " + f£);
Lines 1-8 create var oStrings =
and format an "PG3032901074056",
. "PG3052321074056™",
array:: "PG3062641074056",
"PG3082651074056™",
"PG3182821075056",
1;
: _ var a = oStrings[Math.floor (oStrings.length * (Math.random()))];
NeXt’ lm.es 10-15 var b = oStrings[Math.floor (oStrings.length * (Math.random()))];
create six var ¢ = oStrings[Math.floor (oStrings.length * (Math.random()))];
B _ var d = oStrings[Math.floor (oStrings.length * (Math.random()))];
varlables, a f' to var e = oStrings[Math.floor (oStrings.length * (Math.random()))];
store six random var £ = oStrings[Math.floor (oStrings.length * (Math.random()))];
numbers:
: _ Sprop.set ("MessageClip", "propl", a);
NexL]Jnes ?6 21 Sprop.set ("MessageClip", "prop2", b);
populate Cllp Sprop.set ("MessageClip", "prop3", c);
: . Sprop.set ("MessageClip", "prop4", d);
propertles with Sprop.set ("MessageClip", "prop5", e);
the random $prop.set ("MessageClip", "propé", f);
numbers by
variable.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_4.html

Lines 22-27 set .’fcin;)@.{t .result.postMessage ($context.result .LEVEL INFO, "ecard:
debug messages $conte>’<t .result.postMessage ($context.result.LEVEL INFO, "ecard:
for each variable. ;c;ni))e;ct .result.postMessage ($context.result .LEVEL INFO, "ecard:
n .
$c;n§)e>’<t .result.postMessage ($context.result .LEVEL INFO, "ecard:
n .
$c;ng)e>’<t .result.postMessage ($context.result .LEVEL INFO, "ecard:
n .
$c;n§je>’<t .result.postMessage ($context.result .LEVEL INFO, "ecard:
n + ’.

Script 3: Single-element Data Array, Select Unique Values

The Single-element data array, select unique values script shows how a script can be
used to ensure that only a single value from an array is used by a clip/composition.

This script takes into account track and clip indexes to make sure that only unique values
are used in the test. If the serial repeats, or the number of virtual users exceeds the
number defined in the script, the composition will abort.

Note: There are two important restrictions:

(1) There must be enough values to handle the number of Virtual Users times the
maximum number of repeats of the Clip within each Virtual User.

(2) The script must be set ahead of time to specify the maximum number of
repeats of the Clip within each Virtual User (see the variable maxClipRepeats).

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_6.html

;
i
b
o
(@
[l
[

£ = Ce 22X 1IN
var listOfvalues =

[
"Value
"Value
"value
"Value
"Vvalue
"Value
"Value
"Value
"value 9"
"Value 10"

(= - O -

will e b

var maxClipRepeats =

if ($context.currentClipIndex >= maxClipRepeats)

{
Scontext.composition.abort("Too many Clip repeats.”);
}
else
{
note that the ‘?' syntax below is used to change any negative indexes to
var index = ($context.currentTrackIndex < 0 ? 0 : S$context.currentTrackIndex) * maxClipRepeats

if (index »= listOfValues.length)

{

$context.composition.abort("Too many Virtual Users.");

lse

e e

$prop.set("MessageClip”", "GeneratedUniquevValue", listOfvalues[index]);

Lines 5-14 create [

"Value 1",
and format an "Value 2"

array:: "Value 3",
"Value 4",
"Value 5",
"Value 6",
"Value 7",
"Value 8",
"Value 9",
"Value 10"
1;

Set the maximum if (Scontext.currentClipIndex >= maxClipRepeats)

{

nurnber()fCIHJ Scontext.composition.abort ("Too many Clip repeats.");
repeats that there |}

will ever be per else
Virtual User {
(Track) via the

variable,

maxClipRepeats.

“y var index = ($context.currentTrackIndex < 0 ? 0
Note that the " Scontext.currentTrackIndex) * maxClipRepeats +
syntax on the right | ($context.currentClipIndex < 0 ? 0 : $context.currentClipIndex) ;

is used to change
any negative
indexes to 0.

if (index >= listOfValues.length)
{

Scontext.composition.abort ("Too many Virtual Users.");

}

else

{

Sprop.set ("MessageClip", "GeneratedUniqueValue",
listOfVvalues [index]) ;

}
}

Script 4: Single-element Data Array, Select Unique Values — second
example

The incrementing in this script is done based on track and clip indexes. This is necessary
when each serial repeat of a clip needs a different element in the array. This example is
different because it substitutes in zeros (0) instead of aborting the composition.

var oStrings =

[
"benroslhl3iddddebl292”,
"fiskiahefp663Tjaedb2l”,
"wilsmas8511get6345”,

1:

if (Scontext.currentClipIndex > 49)

{
eval ("throw \"Maximum serial repeats exceeded.\";");
}
else
{

var a = oStrings|[(Scontext.currentTrackIndex < 0 ? 0 : Scontext.currentTrackIndex) = 50
+ [Scontext.currentClipIndex < 0 ? 0 : Scontext.currentClipIndex)];

Sprop.set("MessageClip”, "user", a);

$context.result.postMessage($context.result.LEVEL INFO, "User: " + a);

Lines 2 through 8 | var oStrings =

[
set up the data "benroslhl3444deb1292",

array oStrings. "fiskiahefp6637jaed621",
"schhenhfzol060gay2955",
"wilsmas8511lget6345",

1;

Next, check to
ensure that the
maximum serial

if ($context.currentClipIndex > 49)

eval ("throw \"Maximum serial repeats exceeded.\";");

}

repeats of the test else

clip are not {

exceeded.

Choose an element | Var & = oStrings [($context.currentTrackIndex < 0 ? 0 :

from the array
based on the Track
and Clip repeat.
The extra0? 0
code subs in a zero
if the index comes
back as undefined.

Scontext.currentTrackIndex) * 50 + (S$Scontext.currentClipIndex <
0 ? 0 : $Scontext.currentClipIndex)];

Set the clip
property to the
contents of 7a? ?
the selected value

Sprop.set ("MessageClip", "user", a);

Show debug
information in
results.

Scontext.result.postMessage ($context.result.LEVEL_ INFO, "User: "

+ a);

Script 5: Two-element Data Array, Choose One Record Randomly

The Two-element data array, choose one record randomly script is run at the beginning

of the clip. It creates two track properties behind the scenes (i.e. the track properties are
not created in the composition editor). It loads each element of the array into its own
property. This type of script is used when the first element of the array is related to the
second element - as in username/password combinations.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_5.html

/{ The set of data fro

testData =

v
[
["lindab4628acl.com” 'eEQ“Cé?DADRDBEEBFBFQCEAEFQ62?95&"],

["dancehottied0@msn.com”, "109A25E92070491C83C2ZED3ABEY6CACE"],
["Cortneyjboydigmail .com”, "FF94B25791A80AF1CSE11FAF66038226"],
["Gakourifsuffolk.edu” ' "C7561DB7A418DD39B2201DFEL10AB4R4A"],
["tomshea98hotmail.com”,"60FB1504776106EAEC25522A6CF4D9CE"],

["gonavy908hotmail .com" , "DCFCT5660BACSCTSTBC59E306CDEFTRAS"],
['boykllvnacn1CF edu” FCEQCJBQCCEH&QQQOBEQEQQFQTDISOFB"],
["swalkerfapsdkids. urg ,"AS410EE37744C5T74BAST90034EROBFT79"],
['—kec 1iyerefaocl.com” ,"F222791CCO7TC629D9357F13D2143F8E2"],
["ehxyuBucsc.edu” ,'EAI?JQFIBaBCRIDEI F19441390EAR34"],
["bgammillédrury.edu","754968094CE842A07B663962196ATTREC"],
1:

'/ Generate a random index into the test data.

var randomIndex = Math.min(Math.round(Math.random() * (testData.length - 1)), testData.length - 1);

/! Create and populate custom properties for this instance of this Track.
var propertyList = $context.currentTrack.propertyList;
if (Scontext.currentClipIndex == 0)
propertyList.createProperty("email”);
propertyList.setPropertyvalue("email”, testData[randomIndex][0]);
if (Scontext.currentClipIndex == 0)

propertyList.createProperty("password”);
propertyList.setPropertyvalue("password”, testData[randomIndex]([1]);

First, define the set anr testbata =

of data from which | ["lindab462@aol.com", "4690C47DADADASSBF8FAC6A2F262798A"] ,
["dancehottie90@msn.com", "109A25E92070491C83C2ED3ABE96CACE"],
to select (user ID ["Cortneyjboydegmail .com", "FF94B25791A80AF1C5E11FAF66038226"],
and password). ["Gakouri@esuffolk.edu", "C7561DB7A418DD39B2201DFE110AB4A4 "],
["tomshea9@hotmail .com", "60FB1504776106EAEC25522A6CF4D9IC8 "],
["gonavy90@hotmail . com", "DCFC756608AC5C7578C59E306CDEF7A9"] ,
["boykilvmecmich.edu", "FCE9CD59CCEAA9290829200F27D150FB"],
["swalker@aps4kids.org", "A5410EE37744C574BA5790034EA08F79"] ,
["nkechiyere@aol .com", "F222791CC077C629D9357F13D2143F82"] ,
["chxyueucsc.edu", "6A1759F184BCA1DAL0F19441390EAA34 "],
["bgammilledrury.edu", "754968094C842A07B663962196A776EC"],

1:

var randomIndex = Math.min (Math.round (Math.random() *

Generatga’ . (testData.length - 1)), testData.length - 1);
random index into
the test data.
var propertylList = S$context.currentTrack.propertylList;
Create and if (Scontext.currentClipIndex == 0)
u u propertyList.createProperty ("email") ;
opulate custom i (i1n)
: . propertyList.setPropertyValue ("email",
properneSfbrthls testData [randomIndex] [0]) ;
instance of this if ($context.currentClipIndex == 0)
T Kk propertyList.createProperty ("password") ;
rack. propertyList.setPropertyValue ("password",

testData [randomIndex] [1]) ;

Script 6: Two-element data array, increment through values

The Two-element data array, increment through values script is run at the beginning of
each clip. It loads each element of the array into its own clip property based on the track
index (virtual user number). The user selected in this script is used throughout the track
- it doesn’t change on the same track (currentTrackIndex).

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_7.html

var testData =
"mariopaleka”, "mp7ITTTIT" 1,
"nbavpaulz"”,"lakers4d”],
"chitownlegend", "mj23chicago”],
"laurencetan8”, "loverboy"],
"dfalkson","77447744"],

r

var a = testData[Scontext.currentTrackIndex];

Sprop.set("MessageClip", "user”, a[0]);
$prop.set("MessageClip"”, "pass", a[l]);

To change the user \[Iar testData =

for each repeat of ["mariopaleka", "mp7777777"]1,

: ["nbavpaulz", "lakers4"],
ﬂleteStChp'use ["chitownlegend", "mj23chicago"],
currentClipIndex | [#laurencetan8","loverboy"l,
instead. ["dfalkson", "77447744"],

1;

Note: Ensure that var a = testDatal[S$Scontext.currentTrackIndex] ;

you have enough _

. . Sprop.set ("MessageClip", "user", al0]);
datalrlthffscrlpt $prop.set ("MessageClip", "pass", alll);
to handle the
number of virtual
users and serial
repeats of the test
clip.

Script 7: Seed data from URL

The Seed Data from URL script randomly selects one of the lines from a list and puts that
value into a clip property named DataListValue.

This example assumes there is just a single element on each row in the CSV file. Meaning,
it is a simple list of values to be used in the test. The data would look like this in the file:
Usernamel

Username?2
Username3

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_8.html

var datalist = 3util.readFromURL("http://www.myhost.com/directory/file.csv");

[FER . By

var a = datalist[Math.floor(datalist.length * (Math.random(3)2];

1 LN

b (// To iterate through the list (instead of random), use these options:
£ var a = datalist[3context. currentCliplndex]; (different users in a track)
B |// var a = datalist[Scontext.currentTrackIndex: (each track gets a different user)

18 | sprop.set("MessageClip", "DatalistValue™, a);
11 | Scontext.result.postMessage($context.result.LEVEL_INFO, "Dota List Value: ™ + a);
12 | Scontext.result.postMessage(3context.result. LEVEL_INFO, "Data List Length: " + datalist.length);

; var datalist =
In]%ne 1,dgclareza Sutil.readFromURL ("http://www.myhost.com/directory/file.csv") ;
variable using

util.readFromURL.

Make a variable, a var a = datalList[Math.floor (dataList.length *
) ’ (Math.random()))];
for the increment.

; Sprop.set ("MessageClip", "DatalListValue", a);
TOlt?raFethrough Scontext.result.postMessage ($Scontext.result.LEVEL INFO, "Data
the list (instead of List Value: " + a);
randorn) use these Scontext.result.postMessage ($Scontext.result.LEVEL INFO, "Data

)

) List Length: " + datalist.length);
options:

To iterate through
the list (instead of
random), use these
options:
1. var a =

dataList [Scontex

t.currentClipInd
ex] ;

(different users in a
track)

2. var a =
dataList [Scontex
t.currentTrackIn
dex] ;

(each track gets a
different user)

: : : dataList [0] [0] San Francisco
This functionality dataList [0] [1] CA
can be expanded to | dataList [0] [2] 94103
extract data from

multiple comma-

dataList [1] Timbuktu

d val datalList [2] [0] Caribou
separated values on datalList [2] [1] Aroostook County

the same line. Here dataList [2] [2] Maine
. datalList [2] [3] USA
are additional

; dataList [3] [0] Hill Valley
examples. If the file talioi[3ll1] ca

contained the dataList [3] [2] 91905
following lines:

San
Francisco,CA, 9410
3

Timbuktu

Caribou, Aroostook
County,Maine, USA
Hill

Valley,CA, 91905

The array of strings
on the right would
be returned:

Script 8: Seed Data from URL — second option

This second Seed Data from URL script is similar to the first, but instead extracts
multiple columns in the input comma-separated values (CSV) file.

var datalist = Sutil.readFromURL("http:/fwew.myhost.com/download/output.csv”, "C5V", true);
Scontext.result.postMessage($context.result.LEVEL_INFO, "Rows in input file: " + datalList.length);

var randomRow = Math.floor{datalist.length * (Math.random(}));
wvar full_row = datalist[randomRow] ;
Scontext.result.postMessage($context.result.LEVEL_INFO, "full row: " + full_row);

var cauth_token = datalist[randomRow][1];
Sprop.set("MessageClip"”, "oauth_token", cauth_token);
Scontext.result.postMessage($context.result.LEVEL_INFO, "oauth_token: " + oauth_token);

wvar oauth_token_secret = dotalist[randomRow][2];
Sprop.set("MessageClip”, "ocauth_token_secret™, ocauth_token_secret);
Scontext.result.postMessage($context.result.LEVEL_INFO, "oauth_token_secret: " + oauth_token_secret);

var user_id = datalist[randomRow][3];
Sprop.set("MessageClip”, "user_id", user_id),
$context.result.postMessage($context.result.LEVEL_INFO, "user_id: " + user_id);

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_32.html

Remember ziiigéizgégiomURL ("http://www.soasta.com/download/output.csv", "CSV",
that the first | true);
column is
. Scontext.result.postMessage ($context.result.LEVEL INFO, "Rows in
index value input file: " + datalList.length); B
0. In the
example var randomRow = Math.floor (datalList.length * (Math.random()))
bel it var full row = dataList [randomRow] ;
elow, 1t1s Scontext.result.postMessage ($Scontext.result .LEVEL INFO, "full row: "
taking + full_row); -
columns 2,
3 d 4 var oauth token = datalList [randomRow] [1];
i an Sprop.set ("MessageClip", "oauth token", ocauth token);
(index $context.result.postMessage ($context.result.LEVEL INFO, "oauth token:
values 1, 2, " + oauth token) ;
and 3) var oauth token secret = dataList [randomRow] [2];
Sprop.set ("MessageClip", "oauth token secret", oauth token secret) ;
Scontext.result.postMessage ($context.result.LEVEL_ INFO,
"oauth token secret: " + oauth token secret) ;
var user id = datalList [randomRow] [3];
Sprop.set ("MessageClip", "user_id", user id);
Scontext.result.postMessage ($context.result.LEVEL INFO, "user id: " +
user id);

Script 9: Put an Array into a Clip Property

The Put an Array into a Clip Property script loads "links" into an array (red text shows
actual setting of array to a clip property). This script demonstrates how to save variable
context between chain (or collection) loops. The script extracts the links from the list in
the response of the prior Message. The "prior Message" is the immediately preceeding
item of type Message that is not contained in a chain. The list is placed into Clip Property

"Links", overwriting anything that might already be in that property.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_37.html

var xpath

th Wl

1 -

var h?infﬁés%aée-=-findPridrHe55agei];

s "l.l'lu"L.j_n!-s_'T:”. | isty

var links = priorMessage.getResponse(priorMessage.RESPONSE HTTP BODY AS JSON, xpath);

ff Were ther: amy inks?
if {links == null)
I .
S/ There were no link:
[/ We can't continue this ip, since we don't know what to do next
throw "Mo Links found in response to Message + priorMessage.name;
}
else
1
/ found.
Find the var priorMessage = findPriorMessage() ;
previous
Message.
This XPath var xpath = "//link";
will find the
links in the
response.
Get the var links =
] priorMessage.getResponse (priorMessage .RESPONSE HTTP BODY AS JSON,
links. xpath) ;
Were there if (links == null)
. 0 {
any links? clse
{

If no links
throw an
error
message. If
links are
found,
display in
the result.

displayLinks(links.length + " Links found in response to Message
+ priorMessage.name, links);

Put the links
in the Clip
property as
a list of links
in the Result
in a single
entry.

Scontext.currentClip.propertyList.setPropertyValue ("Links",

links) ;

}

The caller
specifies the
title and the
details
contains the
list.

function
displayLinks
(title, links)

{

var text = "";
for (var i = 0; 1 < links.length; i++)

{

text +="[" +i+"] " + links[i] + "\n";

}

$context.result.postMessage($context.result. LEVEL_INFO, title, text);

}

This
function
finds the
immediately
preceding
Message
from the
current
position,
ignoring
anything
nested
inside
Chains.
Throws an
error if
there is no
prior
Message.

function findPriorMessage()
{
var priorMessage = $context.currentltem.previousltem;
for (;;)
{
if (priorMessage == null)
throw "No prior Message";
if (priorMessage.type == "Message")
break;
priorMessage = priorMessage.previousltem;

}

return priorMessage;

}

Extraction Scripts

This section presents a variety of CloudTest extraction scripts. Scripts can be copied and
pasted directly into the SOASTA CloudTest Script Editor using Central > Scripts. Longer

scripts have an accompanying link that can be clicked to pop out the full example script.
Shorter scripts are presented inline.

Script 1: Extract from Response Body (HTML)

The Extract from Response Body (HTML) script extracts an element from a page
response and sets a clip property. This is a versatile example because you can change the
XPath to extract different elements. The XPath below extracts the soasta-password value
from a file that returns a response like this:

<div id="soasta-password" style="display:none">rogxWFmmYR</div></div>

var msg = Scontext.currentItem.previousItem;
var passwordValue = msg.getResponse(msg.RESPONSE_HTTP_BODY_AS_HTML, "//*[8id='scasta-password']")[0]j;

Sprop.set("MessageClip", "password”, passwordvValue);

The SCI'ipt itself var msg = Scontext.currentItem.previousItem;

is relatively
simple. The first
two lines
determine the
context and

search for the id
soasta-

password. Line 1
sets the test clip
context for the

message
: var passwordValue =
Line 2 extracts msg.getResponse (msg.RESPONSE_HTTP_BODY AS_HTML, "//*[@id='soasta-
the value of password']") [0];
“soasta-

password” from
the message
response using
XPath.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_9.html

The last line sets
a clip property,
passwordValue,
to contain the
relevant string
from the
variable of the
same name.

Sprop.set ("MessageClip", "password", passwordValue) ;

The following script presents a slight variation of the prior script by extracting an id

from an HTML page:

Set the context
to the preceding
message, and
then declare a

var msg = Scontext.currentItem.previousItem.previousItem;
var semesterInputValue =

msg.getResponse (msg.RESPONSE_HTTP_ BODY AS HTML,
"//*[@id="term 13']/@value") [0];

variable, $prop.set ("MessageClip", "term", semesterInputValue);
semesterInputVal

ue,U)getthe $context.result.postMessage (Scontext.result.LEVEL_ INFO,
XPath Specified "sem: " + semesterInputValue) ;

from the HTML

response.

The Sprop.set ("MessageClip", "term", semesterInputValue) ;
semesterInputVal

ue NOW contains
the string to put
into a clip

property:

XPath Samples Table

The XPath Samples Table presents some common XPath values used in the sample
CloudTest scripts in this guide along with the HTML that they retrieve.

Note:

Browser add-ons that capture or identify XPaths within the

Document Object Model (DOM) of a given HTML page and browser
are useful tools in test creation. For example, XPather for Firefox, or
Safari XPath.

Retrieves

<div id="soasta-password"

XPath

//*[@id="'"soasta-password']

style="display:none" >rogxWFmmYR</div></div>

<input type="hidden" name="form build id"

//* [@name="'form build id']/evalue

id="form-5287344f04574el13fe662dce074dc3fa"
value="form-5287344f04574el3fe662dce074dc3fa"

/>

name=form token id=edit-form-token
value=92b837a209278461ab88190c8e912af6

<1li class="leaf" id="menu-

leaf50000Myaccount21l">My

account

//* [@name="'form token']/@value

//11i[@id="menu-
leaf50000Myaccount2l'] /a/@href
(extracts the /user/16 portion)

Script 2: Extract from Response Body — SubString

This example does multiple substrings of substrings.

Line 1
establishes the
context where
the property will
be set, while line
2 declares a
variable to store
the JSON
element from
the response.
Lines 3-8
retrieve the
search string by
position. Lines
10-11 set clip
property to store
the result and
posts a message
to results.

var
var

var
var
var

msg = Scontext.
origText = msg.

searchString =
pos = origText.
newText =

currentItem.previousItem;
getResponse (msg.RESPONSE HTTP_ BODY) ;

"wufids>";
indexOf (searchString) ;

origText.substring(pos +

searchString.length) ;

var pos = newText.indexOf ("</ufid>") ;
newText = newText.substring (0, pos);
Sprop.set ("MessageClip", "ufid", newText) ;

Scontext.result.postMessage ($context.result.LEVEL INFO,

"ufid: "

+ newText)

I

Script 3: Extract from Response Body (JSON)

The Extract from Response Body (JSON) script extracts an element from a JSON page
response and sets a clip property.

Line 1
establishes the
context where
the property will
be set, while line
2 declares a
variable to store

var msg = $context.currentItem.previousItem;

var authid = msg.getResponse (msg.RESPONSE HTTP BODY AS JSON,
"//authid") [0] ;

the JSON

element.

Line 3 sets $context.result.postMessage ($context.result.LEVEL INFO, "authid:
" 4+ authid) ;

debug

information to
be posted into
test results.

Finally, line 4
sets a clip
property using
the variable
from line 2.

Sprop.set ("MessageClip", "authid", authid);

Script 4: Extract from Response Header

This script extracts data from a Location header using the orderld. The orderld is
in the middle of the Location header and needs to be extracted using a substring.

This script gets
the recorded
response from
the previous
message in a test
clip using a
variable,
origText, which
gets a specified
HTTP Header.

// This Script looks at the response to the Message that
// precedes it and Extracts the OrderID

// Get the Message that immediately precedes this Script.
var msg = $context.currentItem.previousItem;

var origText = msg.getResponse (msg.RESPONSE HTTP HEADER,

"Location") ;

var pos = origText.indexOf ("orderId=") ;

var newText = origText.substring(pos + 8);
var pos = newText.indexOf ("&deliveryDate") ;
newText = newText.substring (0, pos);
Sprop.set ("MessageClip", "OrderID", newText) ;

Scontext.result.postMessage ($context.result.LEVEL INFO, "order

ID: " + newText);

This script also
uses
previousItem to
extract data
from a header in
arecorded
response. In this
case, the header
value (krypto) is
the last item on
the Location
header.

Note: In some
cases, non-
visible trailing
spaces may be
present. To get
an accurate
extraction, make
sure you trim
any spaces to the
right of the value
to extract.

// Get the Message that immediately precedes this Script.
var msg = S$context.currentItem.previousItem;

var origText =
"Location") ;

msg.getResponse (msg.RESPONSE HTTP_HEADER,

origText.indexOf ("krypto=") ;
origText.substring(pos + 7);

var pos =
var newText =

Sprop.set ("MessageClip", "kryptoA", newText) ;
Scontext.result.postMessage ($context.result.LEVEL INFO,
" 4+ newText) ;

"kryptoA

Once again
using
previousItem
to extract
from a prior
message in a
test clip,
this time
extracting a
JSESSIONID
from a “Set-
Cookie”
header.

// This Script looks at the response to the Message that
// precedes it and Extracts the jsessionId cookie

// Get the Message that immediately precedes this Script.
var msg = S$context.currentItem.previousItem;

var origText = "Set-
Cookie") ;

msg.getResponse (msg.RESPONSE HTTP_HEADER,

var pos = origText.indexOf ("JSESSIONID=") ;
var newText = origText.substring(pos + 11);
var pos = newText.indexOf (";");
newText = newText.substring (0, pos);

Sprop.set ("MessageClip", "jsessionId", newText);
S$context.result.postMessage ($context.result.LEVEL_ INFO,
"JSESSIONID: " + newText) ;

Script 5: Extracting Data from a Message TWO Prior

The Extracting Data from a Message TWO Prior script extracts information from TWO
MESSAGES prior using XPath and then puts that information into a property..

var msg = Scontext.currentItem.previousItem.previousItem;

var semesterInputValue = msg.getResponse(msg.RESPONSE_HTTP BODY AS HTML,

S$prop.set("MessageClip”,

"ff*[@id="term 13"]/@value")

"term”, semesterInputValue);

Line 1
establishes the
clip element
TWO items
before the script
as the context.

var msg = Scontext.currentItem.previousItem.previousItem;

Line 3 declares
the wvariable,

semesterInputValue
, and specifies

the XPath ID to
find.

var semesterInputValue =
msg.getResponse (msg.RESPONSE HTTP_BODY AS HTML,
"//*[@id="'term 13'] /@value") [0];

Line 5 places the
extracted data
into a clip

property

Sprop.set ("MessageClip", "term", semesterInputValue) ;

Script 6: Extracting and Encoding a VIEWSTATE and EVENTVALIDATION

Use the Extracting and encoding a VIEWSTATE and EVENTVALIDATION script to extract
the common .Net fields, VIEWSTATE and EVENTVALIDATION, from recorded responses.

These fields are typically hidden in an HTML file.

function encodeViewState(str) {
return escape(str).replace(/\+/g, "$#2B').replace(/*/g, "%2A").replace(/=/g, '3%3D").replace(/:/g, %3}

}

var msg = $context.currentItem.previousItem;

var viewstateValue = msg.getResponse(msg.RESPONSE_HTTP_BODY_ AS HTML, "//*[Ename="_ VIEWSTATE]/8vall
$prop.set("MessageClip”, "viewstate unencoded”, viewstateValue);
S$context.result.postMessage($context.result.LEVEL INFO, "viewstate unencoded: " + wviewstatevalue);

viewstateValue=encodeViewState (viewstateValue);

Lines 1-5 create function encodeViewState (str)

. return escape (str) .replace(/\+/g, '%2B') .replace (/*/g,
an enCOdlng '%2A') .replace(/=/g, '%3D"') .replace(/:/g, '%3A"') .replace(/;/g, '%3B'
function as) .replace(/\//g, '%2F');

string, }

encodeViewState.

This SCI'ipt will var msg = $context.currentItem.previousItem;

use the
previousItem

position to
access a
message. The
message must
have local or
public scope.

; var viewstateValue =
A Varlable’ i msg.getResponse (msg.RESPONSE _HTTP_BODY AS HTML,
viewstateValue, 1S "//* [@name="'__VIEWSTATE']/@value") [0];

declared to
contain the
unencoded
string. The
variable now has
the unencoded
string.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_27.html

A test clip
custom property
of the same
name is created
to take the value.

$prop.set ("MessageClip", "viewstate unencoded", viewstateValue) ;

Debug
information is
posted to test
results.

$context.result.postMessage ($context.result.LEVEL_ INFO,
"viewstate unencoded: " + viewstateValue) ;

encoded: " + viewstateValue) ;

Using the
viewstateValue, an
encoded version
is created for use
in subsequent
message
requests.

viewstateValue=encodeViewState (viewstateValue) ;

A test clip
custom property
of the same
name is created
for the encoded
viewstate.

Sprop.set ("MessageClip", "viewstate encoded", viewstateValue) ;

Set debug
information for
results.

Scontext.result.postMessage ($context.result.LEVEL INFO,
"viewstate

The viewstatevalue
now contains the
unencoded
viewstate string

var viewstateValue =
msg.getResponse (msg.RESPONSE HTTP_BODY AS HTML,
"//* [@name="'__VIEWSTATE']/@value") [0];

A test clip
custom property
of the same
name is created
for the
unencoded
viewstate.

$prop.set ("MessageClip", "viewstate unencoded", viewstateValue) ;

Set debug
information for
results.

Scontext.result.postMessage ($context.result.LEVEL INFO,
"viewstate unencoded: " + viewstateValue) ;

The
viewstateValue
now contains the
encoded
viewstate string.,
so set a property
in the next line.

viewstateValue=encodeViewState (viewstateValue) ;

Atest clip
custom property
of the same
name is created
and the value is
inserted.

Sprop.set ("MessageClip", "viewstate encoded", viewstateValue) ;
name='__EVENTVALIDATION'] /@value") [0];

Set debug
information for
results.

Scontext.result.postMessage ($context.result.LEVEL INFO,
"viewstate encoded: " + viewstateValue) ;

Declare a
variable for the
eventvalidationV
alue extraction
and then get the
recorded
response as
HTML using the
XPath.

var eventvalidationValue =
msg.getResponse (msg.RESPONSE HTTP_ BODY AS HTML, ,
"//* [@name="'__ EVENTVALIDATION'] /@value") [0];

Now that the
eventvalidationV
alue contains the
unencoded
string, set a
property for use
in subsequent
messages.

Sprop.set ("MessageClip",
eventvalidationValue) ;

"eventvalidation unencoded",

Set debug
information for
results.

Scontext.result.postMessage ($context.result.LEVEL INFO,
"eventvalidation unencoded: " + eventvalidationValue) ;

Encode the
eventvalidatio

nvalue for use in
subsequent
message
requests.

eventvalidationValue=encodeURIComponentencodeViewState (eventvalid
ationValue) ;

encoded: " + eventvalidationValue) ;

Sprop.set ("MessageClip",
eventvalidationValue) ;

"eventvalidation encoded",

Set a test clip
custom property.

Set(iebug Scontext.result.postMessage ($context.result.LEVEL INFO,
. - "eventvalidation

information for

results.

Script 7: Extracting and Encoding a VIEWSTATE
The Extracting and encoding a VIEWSTATE script extracts only a VIEWSTATE value.

VIEWSTATE is typically a hidden field in an HTML file and is frequently used in .NET

applications.

Most POST messages in a .NET application have a VIEWSTATE while not all have
EVENTVALIDATION parameters. This script is sometimes used in combination with
prior script and is applied when a given field has no EVENTVALIDATION parameter.

The

the

TUNCTION ENCOOEVIEWSTATE[STI] |
return escape(str).replace(/\+/g, "%2B").replace(/*/qg,

}

"%2A°) .replace(/=/g, "%3D"

VAr mMSg Scontext.currentItem.previousItem;
var viewstateValue = msg.getResponse (msg.RESPONSE_HTTP BODY AS HTML,

$prop.set("MessageClip”, "viewstate unencoded”, viewstateValue);
Scontext.result.postMessage($context.result.LEVEL INFO, "viewstate unencoded:

viewstateValue=encodeViewState (viewstateValue);
Sprop.set("MessageClip”, "viewstate encoded”, viewstateValue);
Scontext.result.postMessage(Scontext.result.LEVEL INFO, "viewstate encoded:

"% Bname="

'+ wviey

'+ viewst

) repl

_ VTH

function encodeViewState (str)

{

Lines 1-5 create

an encoding
function as string,

encodeViewState.

return escape (str).replace(/\+/g, '%2B') .replace(/*/g,
"$2A') .replace(/=/g, '%3D') .replace(/:/g, '$3A") .replace(/;/g, '%3B
") .replace(/\//g, '%2F');

}

Get the message
response from
recorded HTML

and extract the
viewstateValue

using XPath, after
which

viewstateValue
contains the
unencoded
viewstate string.

var msg Scontext.currentItem.previousItem; var viewstateValue
msg.getResponse (msg.RESPONSE HTTP_BODY AS HTML,
"//*[@name='__ VIEWSTATE']/@value") [0] ;

state encoded: " + viewstateValue) ;

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_23.html

Set a custom clip
property of the
same name and
insert the

unencoded value.

$prop.set ("MessageClip", "viewstate unencoded", viewstateValue) ;

Post debug
information to
results.

Scontext.result.postMessage ($context.result.LEVEL INFO,
"viewstate unencoded: " + viewstateValue) ;

Create an
encoded version
of the

viewstateValue
for use in
subsequent
message
requests.

viewstateValue=encodeURIComponentencodeViewState (viewstateValue)

7

Set the custom
clip property
value of the same
name and insert
the encoded
value.

Sprop.set ("MessageClip", "viewstate encoded", viewstateValue) ;

Post debug
information to
results.

Scontext.result.postMessage ($Scontext.result.LEVEL INFO,
"eventvalidation encoded: " + eventvalidationValue) ;

Script 8: Verify Something Exists in a Response before Attempting
Extraction

In the Verify something exists in a response before the extraction is attempted, first
verify data before extracting data for use elsewhere, such as in a clipProperty that stores
an authID to be used in the nextItemin a test clip. Use searchIndex to find a string in the
response.

var msg = $context.currentItem.previousItem;

var response = msg.getResponse(msg.RESPONSE_HTTP_BODY) ;

if (response == null)

{

Scontext.result.postMessage(3context.result.LEVEL _INFO, "Message " + msg.name
+ " received no response to validate.");

}

else

{

var stringToFind = "authid";

var searchIndex = response.indexOf(stringToFind);

if (searchIndex == -1)
{
var details = "Response:\n" + response + "‘\n\nValue searched for:wn" +
stringToFind;
Line 1 sets the var msg = $Scontext.currentItem.previousItem;

context to the
previousItem,
which must have
local or public
scope.

Line 3 declares a | v@r response = msg.getResponse (msg.RESPONSE HTTP_BODY) ;

variable for the
response.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_24.html

Lines 6-15 are
an "if...else"
statement that
determine if
there was a
response and
outputs debug
information to
results if null.

if (response == null)

{

// There was no response.

// Output an informational message.

$context.result.postMessage ($context.result.LEVEL_ INFO,
" + msg.name

+ " received no response to validate.");

}

else

{

// There was a response.

Line 19 defines
the variable

var stringToFind = "authid";

stringToFind
and sets its value
as authid.
Lines 22-30 var searchIndex = response.indexOf (stringToFind) ;
dec}ar8521 // If the value does not exist in the response, output an error.
variable, if (searchIndex == -1)
searchlIndex, {
md1kj1getsthe // authI§ not found; output error
var details = "Response:\n" + response + "\n\nValue searched
search result for | for:\n" +
stringToFind. If | stringToFind;

the string is not
found Set debug
information for

results.

$context.result.postMessage ($context.result.LEVEL_ ERROR,
"Expected value not found in response to Message " + msg.name,
details) ;

Lines 36-43
definite and
if...else
statement that
sets the next
message play
count=1. The
nextItemisa
Signln message
(duplicate of the
message before
this script) that
retries the login.
The else (line
42) comes into
effect if the login
succeeds.

var nextItem = Scontext.currentItem.nextItem;
nextItem.setRepeat (nextItem.REPEAT TIMING SERIAL,

nextItem.REPEAT TYPE COUNT CONSTANT, 1,

nextItem.REPEAT DISTRIBUTION CONSTANT,

}

else

{

0);

"Message

In Lines 46-49, if
the authid
exists, putitina
test clip custom

var authId = "//
authid") [0];

Scontext.result.postMessage ($context.result.LEVEL_ INFO,
n +

authid) ;

msg.getResponse (msg.RESPONSE HTTP_BODY AS JSON,

"authId:

count of the
nextltem to 0 and
then clear the
response.

Sprop.set ("MessageClip", "authId", authId);
property.
Il’l Lines 51_59 var nextItem = Scontext.currentItem.nextItem;
’ nextItem.nextItem.setRepeat (nextItem.REPEAT TIMING SERIAL,
reset the play - -

nextItem.REPEAT TYPE COUNT CONSTANT, O,
nextItem.REPEAT DISTRIBUTION CONSTANT,

}
}

0);

msg.clearResponse () ;

Script 9: Extract HTTP Status Code from Response

An HTTP status code can be extracted from a response header using the following one-

line script:

var StatusCode =

msg.getResponse (msg.RESPONSE HTTP_ STATUSCODE) ;

Script 10: InfoPath Forms Services 2007/MOSS variable extraction

Variables in InfoPath Forms Services (IPFS) have the following general characteristics:

e [PFS has two main transactions when interacting with a form: Invocation and

Postback

e Editing Session Id, Solution Id, and Canary are dynamic. They will need to be
extracted from responses.

e Editing Session Id, Solution Id, and Canary are used in the postback request. Their
values will need to be substituted in the postback body.

e Editing Session Id and Solution Id do not change between postbacks. They will only
need to be extracted for the invocation request.

e Canary changes after every postback. It needs to be extracted for every request.

The first IFPS script extracts all 3 variables after the initial form load. /This Script looks
at the response to the Message that precedes it and Extracts variables specific to MOSS
InfoPath applications. This is the first script which extracts 3 variables. EditingSessionld
and Solutionld do not change after this initial extraction, but the CanaryValue does
change after each form postback.

var msg = $context.currentItem.previcusItem;

var origText = msg.getResponse(msg.RESPONSE TEXT);
S$context.result.postMessage($context.result.LEVEL INFO, "full response: " + origText);

rar pos = origText.indexOf("var g_objCurrentFormData");

var newText = origText.substring(pos + 0);

rar pos = newText.indexOf(";");

newText = newText.substring(0, pos);

$context.result.postMessage($context.result.LEVEL INFO, "g objCurrentFormData array: " + newText);

Get the message var msg = Scontext.currentItem.previousItem;
that precedes
this script.
Since there are var origText = msg.getResponse (msg.RESPONSE TEXT) ;
. ' $context.result.postMessage ($context.result.LEVEL_INFO, "full
mlﬂtlple set- response: " + origText) ;

cookie' headers
in the response,
we can't parse

headers using
msg.RESPONSE_H

TTP_HEADER.
Instead, get the
full response and
parse it to the
relevant portion.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_25.html

Find var
g _objCurrentFo

rmData in the
response and
putitinto a
variable
(newText).ThjS
IS just a string
that contains the
JavaScript 'var
..."string. This
is step 1; Itis not
parse-able in
this format.

var pos = origText.indexOf ("var g objCurrentFormData") ;
var newText = origText.substring(pos + 0);

var pos = newText.indexOf (";");

newText = newText.substring (0, pos);

Scontext.result.postMessage ($context.result.LEVEL_ INFO,
"g objCurrentFormData array: " + newText);

The next step is
to execute the

'var
JavaScript.

Since the string
is simply setting
the contents of
the var string to

the variable
g _objCurrentFo

rmData, can be
run using the
eval function.

Running
eval (newText)

will load the
g_objCurrentFo

rmData string
into an array
that the script
can navigate.

eval (newText) ;

Extract the var editingSessionId = g objCurrentFormData [3]
. Scontext.result.postMessage ($Scontext.result .LEVEL INFO,
sessionlD. "InfoPath editingSessionId: " + editingSessionId);
Sprop.set ("MessageClip", "InfoPath editingSessionId",
editingSessionld) ;
Extract the var solutionId unencoded = g objCurrentFormData [4]
solutionID $context.result.postMessage ($context.result.LEVEL_ INFO,

"InfoPath solutionId unencoded:

Sprop.set ("MessageClip",
solutionId unencoded) ;

" + solutionId unencoded) ;
"InfoPath solutionId unencoded",

Extract var canaryValue = g objCurrentFormData[25]

CanaryValue Scontext.result.postMessage ($context.result.LEVEL INFO, "Canary
Value from Response Body: " + canaryValue);

from Response $prop.set ("MessageClip", "InfoPath CanaryValue fromResponseBody",

Body canaryValue) ;

Here is the second IPFS script that extracts just the CanaryValue after each form
postback:

var msg = Scontext.currentItem.previousItem;

r origText = msg.getﬂesponse[msg.RESPONSE_TEKT];
$context.result.postMessage($context.result.LEVEL INFO, "full response: " + origText);

var pos = origText.index0f("var g_cbjCurrentFormData");
r newText = origText.substring(pos + 0);

rar pos = newText.indexOf(";");

newText = newText.substring(0, pos);

$context.result.postMessage($context.result.LEVEL INFO, "g_objCurrentFormData array: " + newText);
é;al-tnewText];
var canaryValue = g_objCurrentFormData[25]
$context.result.postMessage(Scontext.result.LEVEL INFO, "Canary Value from Response Body: " + canaryValue);
$prop.set("MessageClip", "InfoPath CanaryValue fromResponseBody", canaryValue);
Get the message var msg = $context.currentItem.previousItem;
that precedes
this script.
Get the full var origText = msg.getResponse (msg.RESPONSE TEXT) ;
Scontext.result.postMessage ($context.result.LEVEL INFO, "full
response of response: " + origText) ;
headers and
body.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_26.html

Find 'var

g _objCurrentFo
rmData’
definition in
response and
putitinto a
variable
(newText)

This is just a
string that
contains the
JavaScript 'var
..."string.. It is
not parse-able in
this format.

var pos = origText.indexOf ("var g objCurrentFormData") ;
var newText = origText.substring(pos + 0);

var pos = newText.indexOf (";");

newText = newText.substring (0, pos);

Scontext.result.postMessage ($context.result.LEVEL_ INFO,
"g objCurrentFormData array: " + newText);

Running
eval (newText)

will load the
g objCurrentFo

rmData String
into an array
that the script
can navigate.

eval (newText) ;

Extract the
CanaryValue

from Response
Body

var canaryValue = g objCurrentFormData[25]

$context.result.postMessage ($context.result.LEVEL_ INFO,
Value from Response Body: " + canaryValue);

S$prop.set ("MessageClip", "InfoPath CanaryValue fromResponseBody",
canaryValue) ;

"Canary

Script 11: Find all JPG/PNG ‘IMG SRC’ Links in an HTML Response

The Find All IMG SRC Links in an HTML Response script takes an HTML response, parses
through it and extracts just the PNG and JPG ‘img src’ links. The final result is an array
that contains each of the links. An important part of this script is that it removes
duplicates from the array so you are left with just the unique links on the page.

var msg = Scontext.currentItem.previousItem;
srcs = msg.getResponse (msg.RESPONSE_TEXT AS HTML, "//fsrc”);
var response = msg.getResponse();

var count matches = response.split("<img srec=").length-1;
Scontext.result.postMessage(Scontext.result.LEVEL INFO, ("<img src matches: " +count matches));
var array of images = response.split("<img srec=\"");

array of images.splice(0, 1);
var array of images cleaned = new Array();

for (% in array of_ images)

{

Lines 1-3 declare | var msg = Scontext.currentItem.previousItem; e

variables for the var response = msg.getResponse() ;
message, Source | ee// Scontext.result.postMessage (Scontext.result.LEVEL INFO,

var srcs = msg.getResponse (msg.RESPONSE TEXT AS HTML, "//@src") ;e

ima es(as "response: " +response);ee// count the number of ‘<img src=’
8 . matches are in the responseevar count matches =
parseciv1a response.split ("<img src=") .length-
XPath) and the 1;escontext.result.postMessage ($context.result.LEVEL INFO, ("<img
’ src matches: " +count matches));ee// split the array each time

message '<img src="' is foundevar array of images = response.split("<img
src= Illl) ;e

response. \

Lines 8-17 var count matches = response.split("<img src=").length-1;
$context.result.postMessage ($context.result.LEVEL_ INFO, ("<img

declare a src matches: " +count matches)) ;

variable to count
the matches and

creates an array

of images.

// split the array each time '<img src="' is found
var array of images = response.split("<img src=\"")

//since the first element of the array (prior to the first img
src) 1s not interesting, delete it from the array

// array name.splice (indexNumber, numberOfElementsToRemove
array of images.splice(0, 1);

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_33.html

The remaining
lines create an
array of image
s, and then
defines logic to
distinguish
between PNG
and JPG images,
(as well as to
present a list of
IMG SRC links in
the file).
Pertinent Set
debug
information for
results.

var array of images cleaned = new Array();

for (x in array of images)
{
// line below shows each element of array

// S$context.result.postMessage ($context.result.LEVEL_ INFO,
src" + x+ ": " +array of images([x]);

n 1mg

// string to find; hard coded
var stringToFind = ".png";

// Determine if the value exists in the response.

var searchIndex =
array of images [x].indexOf (stringToFind) ;

// Determine if the value exists in the response. A -1
Index indicates the

// value was not found in the response. A positive integer
indicates where

// in the response the value was found.

if (searchIndex == -1)

{

//
Scontext.result.postMessage ($context.result.LEVEL_ INFO,

found ") ;

".png not

// string not found, so look for a .jpg

// string to find; hard coded
var stringToFind = ".jpg";

// Determine if the value exists in the response.

var searchIndex =
array of images [x].indexOf (stringToFind) ;

if (searchIndex == -1)

{

// string not found

Scontext.result.postMessage ($context.result.LEVEL INFO,
".jpg not found either ");

}

// If the value is found, output a confirmation

else {

//$context.result.postMessage (Scontext.result.LEVEL INFO,
".jpg found") ;

//$context.result.postMessage ($context.result.LEVEL_ INFO,
"searchIndex: "+searchIndex) ;

final url = array of images[x].substring(0,
searchIndex+4) ;

//$context.result.postMessage (Scontext.result.LEVEL INFO,
"final url: "+final_url);

array of images cleaned.push(final url);

}
}

// If the value is found,
else {

//
Scontext.result.postMessage ($context.result.LEVEL INFO, ".png

output a confirmation

Script 12: Extract a Substring Using Regex in JavaScript

The Extract a Substring Using Regular Expression script creates some complex

Substrings using regular expression. The value to extract comes from the “ZK - Direct
RIA“ Ajax library. The relevant value to extract is shown in BOLD in the following sample
code:

div id="zk-comp-154" class="panels first-set"><div id="zk-comp-155"
class="es-tab-panel"><div id="zk-comp-156" class="es-scrollable-tall"s><div
id="zk-comp-157"

Since the example above contains more than one dynamic value everything with "zk-
comp" is extracted in the subsequent script below.

var searchString = new RegExp("div id\=\"zk\-compi-[0-9]+3" class‘\=\"panels firstl-set)
var leftIndex = "div id=\"";
var rightIndex = "\"";
var zkl57 = null;
if(false != searchString.test(origText))
{
var result = searchString.exec(origText);

zkl57= new String(result);

Scontext.result.postMessage($context.result.LEVEL_INFO, "First Filter: "+ zkl157);
zkl1l57=zk1l57.substring(zkl57.index0f (leftIndex) + leftIndex.length);
Scontext.result.postMessage($context.result.LEVEL_INFO, "Second Filter: "+ zkl57);

zkl1l57=zk157.substring (0, zkl57.index0f(rightIndex));

Scontext.result.postMessage($context.result.LEVEL INFD, "zkl57= " +zkl57);

Line 2 var searchString = new RegExp ("div id\=\"zk\-comp\-[0-9]+\"
\=\ \ AR \=\"zk\ \ \
: class\=\"panels first\-set\"\>\<div id\=\"zk\-comp\-[0-9]+\"
establishes a class\=\"es\-tab\-panel\"\>\<div id\=\"zk\-comp\-[0-9]+\"
VaIiable, class\=\"es\-scrollable\-tall\"\>");

searchString,
from the regular
expression to the
right of the equal
sign.

Lines 5-6 set var leftIndex = "div id=\"";

leftIndex and var rightIndex = "\"";
rightIndex to
delimit the
search

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_35.html

Lines 8-24
perform the
extraction using
origText and the
indices already
extracted.
Results are
posted for each
filter.

var zkl57 = null;

if (false != searchString.test (origText))

{

var result = searchString.exec (origText) ;
zk157= new String(result) ;

Scontext.result.postMessage ($context.result.LEVEL INFO, "First
Filter: "+ zk157);

zk157=zk157.substring (zk157.index0Of (leftIndex) +
leftIndex.length) ;

Scontext.result.postMessage ($context.result.LEVEL INFO, "Second
Filter: "+ zk157);

zk157=2k157.substring (0, zkl1l57.indexOf (rightIndex)) ;

Scontext.result.postMessage ($Scontext.result.LEVEL INFO, "zkl57= "
+zk157) ;

}

Validation Scripts

This section presents a variety of SOASTA CloudTest validation scripts. Scripts can be
copied and pasted directly into the SOASTA CloudTest Script Editor using Central >
Scripts. Longer scripts have an accompanying image that can be clicked to pop out the
full example script. Shorter scripts are presented inline (in the right column).

Script 1: Throw an Error If a Specified Value Does Not Exist in the Prior
Response

The Throw an error if a specified value does not exist in the prior response script
provides an easy way to perform text validation.

var msg = $Scontext.currentItem.previousItem;
var response = msg.getResponse(msg.RESPONSE_HTTP_BODY);
if (response == null)

{

}.
else

{

name name

var stringToFind = "Account Information";

var searchIndex = response.indexOf (stringToFind);

if (searchIndex == -1)
{

var details = "Response:\n" + response + "\n'nValue searched for:\n" + stringToFind;

Scontext.result.postMessage($context.result.LEVEL_ INFO, "Message " + msg.name + " received no response

Scontext.result.postMessage($context.result.LEVEL ERROR, "Expected value not found in response to Mess

Line 2 gets the var msg = Scontext.currentItem.previousItem;

message that
precedes the
script in the test
clip.

Line 5 declares a | var response = msg.getResponse (msg.RESPONSE HTTP_ BODY) ;

response
variable that
gets the HTTP
BODY.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_10.html

Lines 7-16 set up
an "if...else"
statement that
checks for a null
response and
post debug
information to
results if so.

// Was there a response?
if (response == null)

{

// There was no response.
// Output an informational message.

$context.result.postMessage ($context.result.LEVEL_ INFO,
" + msg.name + " received no response to validate.");

}

else

{

"Message

If there was a
response, Line
23 declares a
variable,
stringToFind,
and searches the
response body
for the value
Account
Information.

var stringToFind = "Account Information";

Line 26 declares

the variable
searchIndex

that equals the
response index
of the

stringToFind
from Line 23.

var searchIndex = response.indexOf (stringToFind) ;

If the value
doesn’t exist,
Lines 29-34
posts that fact to
results. Line 36
clears the
response.

if (searchIndex == -1)

{

var details = "Response:\n" + response + "\n\nValue searched

for:\n" + stringToFind;

$context.result.postMessage ($context.result.LEVEL_ ERROR,

"Expected value not found in response to Message " + msg.name,

details) ;

}
}

msg.clearResponse () ;

Script 2: Throw an error if a specified value does exist in the prior

response

The Throw an error if a specified value does exist in the prior response script will throw

an error if the specified text appears in the prior response.

if (response == null)

{

}
else

{

if (searchIndex > -1)

{

}
}

msg.clearResponse();

Scontext.result.postMessage($context.result.LEVEL INFO, "Message "

var details = "Response:\n"
Scontext.result.postMessage($context.result.LEVEL ERROR, "Error found in response to Message "

var msg = Scontext.currentItem.previousItem;

var response = msg.getResponse (msg.RESPONSE_HTTP_BODY);

+ msg.name + " received no response to validate.");

name name

var stringToFind = "seeing this error because you have";

var searchIndex = response.indexOf(stringToFind);

+ response + "\n\nValue searched for:\n" + stringToFind;

+ msg.name, details);

Get the Message
that precedes
this Script.

var msg = Scontext.currentItem.previousItem;

Then, get the
response from
the HTTP_BODY.
If there was no
response, output
an informational
message as such.

var response = msg.getResponse (msg.RESPONSE HTTP_ BODY) ;
if (response == null)

Scontext.result.postMessage ($context.result.LEVEL INFO, "Message
" + msg.name + " received no response to validate.");
else

'Then,speciﬁzthe var stringToFind = "seeing this error because you have";
string to find.

Check for the if (searchIndex > -1)

value in the var details — "Response:\n' + response + "\m\nvValue

response. If the
value does exist
in the response,
output an error.

searched for:\n" + stringToFind;
Scontext.result.postMessage ($context.result.LEVEL ERROR,
"Error found in response to Message " + msg.name,
details) ;

msg.clearResponse () ;

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_11.html

Script 3: Throw an Error if a Specified Value Does Not Exist in the Prior

Header

The Throw an error if a specified value does not exist in the prior header script looks at
the previous message’s response header to see if a particular string is present. If the

string is present, the validation passes; if not, the validation fails.

var msg = Scontext.currentItem.previousItem;

var header = msg.getResponse(msg.RESPONSE HTTP HEADER, "X-Core-Value");
$context.result.postMessage($context.result.LEVEL_INFO, "Cockie = "+ header);
if (header == null)

{

}_
else

{

var stringToFind = "Family";

var searchIndex = header.indexOf (stringToFind);

$context.result.postMessage($context.result.LEVEL_INFO, "No header to validate’

"y

if (searchIndex == -1)
{
var details = "Response:\n" + header + "\n\nValue searched for:\n" + stringToFind;
$context.result.postMessage($context.result.LEVEL_ERROR, "Expected value not found in ' +
}
}
Getthe:hdessage var msg = $Scontext.currentItem.previousItem;
that immediately
precedes this
Script.
Declare a var header = msg.getResponse (msg.RESPONSE HTTP_ HEADER, "X-Core-
j Value") ;
variable, header,
and
Post(iebug Scontext.result.postMessage ($context.result.LEVEL INFO, "Cookie =
. . "+ header) ;
information to
results.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_21.html

If there was no

if (header == null) {

Scontext.result.postMessage ($context.result.LEVEL INFO, "No
header, post header to validate"); }
debug
information to
results.
There was a ?156
response.
The hard-coded var stringToFind = "Family";
string to find.
Determine if the var searchIndex = header.indexOf (stringToFind) ;
value exists in
the header.
If the value does | if (searchindex == -1)
not exist in the var details = "Response:\n" + header + "\n\nValue searched

header, output
an error.

for:\n" + stringToFind;

Scontext.result.postMessage ($context.result .LEVEL ERROR,

"Expected value not found in '" + msg.name + "' message
header", details);

msg.clearResponse () ;

Script 4: Validate If a String Is Numeric

The Validate if a string is numeric script will validate that a variable (newText, in this
case) has only numeric characters in it.

Set newText
equal to a range
of substring
values.

newText = newText.substring(0, 7);

Check for
numeric values

var strValidChars =
var strChar;
var blnResult = true;

"0123456789";

Test the variable,
strString, for
the characters in
Line 1.

for (i = 0; i++)

{
strChar = newText.charAt (i) ;
if (strValidChars.indexOf (strChar) == -1)

{

blnResult =

i < newText.length && blnResult == true;

false;

Do something to
the non-numeric
variable here

$context.result.postMessage ($context.result.LEVEL_ INFO,
not numeric") ;

}
}

"found

Error Detection and Handling Scripts

This section presents a variety of SOASTA CloudTest error detection scripts. Scripts can
be copied and pasted directly into the SOASTA CloudTest Script Editor using Central >
Scripts. Longer scripts have an accompanying image that can be clicked to pop out the
full example script. Shorter scripts are presented inline (in the right column).

Script 1: Set All Play counts =1

If an error is detected, Set all play counts = 1.

Set;ﬂaycount var nextItem = Scontext.currentItem.nextItem;
while (nextItem != null)
for all messages
inaclipto1 nextItem.setRepeat (nextItem.REPEAT TIMING SERIAL,
. nextItem.REPEAT TYPE COUNT CONSTANT, 1,
(note that this nextItem.REPEAT DISTRIBUTION CONSTANT, O);
1ignores any nextItem = nextItem.nextItem;

messages that
might have other
repeats set on
them).

Script 2: Set Play Count for Subsequent Clip Elements to 0 If an Error Is
Detected

If an error is detected, Set play count for all subsequent clip elements in a clip to 0.

If serial repeats are used, this requires that all clip elements have a play count set to 1 at
the beginning of the clip. Refer to the prior script example for an example.

TTﬁsexanuﬂe var errorDetected = true;
if (errorDetected)

{

var nextItem = Scontext.currentItem.nextItem;

assumes
errorDetected is

true if there was | yhile (nextItem != null)

an error. Disable | {

all following nextItem.setRepeat (nextItem.REPEAT TIMING SERIAL,

items in the nextItem.REPEAT TYPE COUNT_ CONSTANT, O,
nextItem.REPEAT DISTRIBUTION CONSTANT, O0) ;

current Clip. nextItem = nextItem.nextItem;

}
}

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_13.html

Script 3: Stop Current Clip If an Error Is Detected

The following script detects whether an error occurs in a test clip and, if so, stops the clip.

If an error is detected, stop the clip. This is a variant on the script above.

This example var errorDetected = true;
dassumes
"errorDetected"
is true if there
was an error.

If an error is if (errorDetected)
detected {

StOp the current $context.currentClip.end() ;
test clip. J

Script 4: Set All play Counts = 0 if “authid” Is Not returned

Set all play counts in clip = 0 if “authid” is not returned from the login POST.

var msg = Scontext.currentItem.previousItem.previousItem;
var response = msg.getResponse(msg.RESPONSE_HTTP_BODY) ;

if (response == null)

{

$context.result.postMessage($context.result.LEVEL INFO, "Message " + msg.name + " recei

var nextItem = $context.currentItem.nextItem;
while (nextItem != null)

{
nextItem.setRepeat (nextItem.REPEAT TIMING SERIAL, nextItem.REPEAT_ TYPE_COUNT_CONSTAN
nextItem = nextItem.nextItem;
}
msg.clearResponse() ;
}
else
{

Getthfzhdessage var msg = $context.currentItem.previousItem.previousItem;
two ago that
precedes this
Script.

Gettheresponse var response = msg.getResponse (msg.RESPONSE HTTP_ BODY) ;
from HTTP

BODY.
If there was no if (response == null)
response, post {
$context.result.postMessage ($context.result.LEVEL_ INFO, "Message
detnlg " + msg.name + " received no response to validate.");

information to
results. and set var nextItem = $context.currentItem.nextItem;
’ while (nextItem != null)

all play counts to {

0. nextItem.setRepeat (nextItem.REPEAT TIMING SERIAL,
nextItem.REPEAT TYPE COUNT_CONSTANT, O,
nextItem.REPEAT DISTRIBUTION_ CONSTANT, O0);

nextItem = nextItem.nextItem;

}

msg.clearResponse () ;

}

else

{

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_14.html

If there was a
response, specify
the hard-coded
string to find.

var stringToFind = "authid";

Determine if the
response string
exists.

var searchIndex = response.indexOf (stringToFind) ;

If the value
doesn’t exist in
the response,
post an error to
results, and set
all subsequent
requests to play
count=0.

if (searchIndex == -1)

{

var details = "Response:\n" + response + "\n\nvValue
searched for:\n" + stringToFind;

$context.result.postMessage ($context.result.LEVEL_ ERROR,
"Login failed because authid not found " + msg.name, details);

var nextItem = Scontext.currentItem.nextItem;

while

{

nextItem.setRepeat (nextItem.REPEAT TIMING SERIAL,
nextItem.REPEAT TYPE COUNT_ CONSTANT, O,
nextItem.REPEAT DISTRIBUTION_ CONSTANT,

(nextItem != null)

0);

nextItem =

}

msg.clearResponse () ;

}

nextItem.nextItem;

Script 5: Disable Chain If Value Not Found in Response

This script can be added to the typical validation script. "BulkChain 1" is the name of the
chain. There are 2 chains in the test, and they are named BulkChain 1 and 2. The script
can find them by name and set them to a specific value. 0 = it will not play.

if (searchIndex == -1)
{
var details = "Response:\n" + response + "\‘n\nValue searched for:\n" + stringToFind;
$context.result.postMessage($context.result.LEVEL _ERROR, "Expected value not found in response to Messa
var chain = Scontext.currentClip.getChild("BulkChain 1");

chain.setRepeat|
chain.REPEAT TIMING_SERIAL,
chain.REPEAT TYPE_COUNT_CONSTANT,

0,
chain.REPEAT DISTRIBUTION CONSTANT,
0);
chain = $Scontext.currentClip.getChild("BulkChain 2");

chain.setRepeat|
chain.REPEAT TIMING_SERIAL,
chain.REPEAT TYPE_COUNT_CONSTANT,

0,
chain.REPEAT DISTRIBUTION_CONSTANT,
0);
}
This example var errorDetected = true;
if (errorDetected)
assumes {
Detected
.error X var nextItem = Scontext.currentlItem.nextItem;
is true if there while (nextItem != null)
was an error. {
Disable all nextItem.setRepeat (nextItem.REPEAT TIMING SERIAL,

M nextItem.REPEAT TYPE COUNT CONSTANT, 0,
following items nextTItem.REPEAT DISTRIBUTION CONSTANT, 0);

in the current nextItem = nextItem.nextItem;

Clip. J

Script 6: Check for ErrorRedirect Response

The Check for ErrorRedirect response script checks the body of a response for errors and
throws the error and message associated with the error.

var msg = Scontext.currentItem.previocusItem;

try
{
checkForError (msg);
}
finally
{

msg.clearResponse|() ;

}

function checkForError(message)
{
var responseText = message.getResponse(msg.RESPONSE_HTTP BODY);
if (responseText != null)
{
var errorPrefix = "errorRedirect.htm%3FError%iD";
var errorTerminator = "%26";
var errorIndex = responseText.indexOf(errorPrefix);
if (errorIndex == 0)

{
var errorText = responseText.substring(errorIndex + errorPrefix.length);
var endIndex = errorText.indexOf (errorTerminator);
if (endIndex > 0)

errorText = errorText.substring(0, endIndex);

var error = 'throw "' + message.name + ': ' + errorText + ""';
eval (error);

}

}
}
Set the context var msg = S$context.currentItem.previousItem;

to the preceding
message.

Check for errors | t*Y

{

us“1gtrY/CatCh checkForError (msg) ;
and clear the }
response. finally

{

msg.clearResponse () ;

}

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_16.html

Check for error
redirect and
throw an
exception if
found.

function checkForError (message)

{

var responseText =
message.getResponse (msg.RESPONSE HTTP_ BODY) ;

if (responseText != null)
var errorPrefix = "errorRedirect.htm%3FError%3D";
var errorTerminator = "%26";

var errorlIndex = responseText.indexOf (errorPrefix) ;
if (errorIndex >= 0)

{

var errorText = responseText.substring(errorIndex +
errorPrefix.length) ;

var endIndex = errorText.indexOf (errorTerminator) ;
if (endIndex > 0)
errorText = errorText.substring(0, endIndex) ;

var error = 'throw "' + message.name + ': ' + errorText +
T .
i

eval (error) ;

Script 7: Compare Response to Message Property and Take Different
Actions on Result (Enable ErrorHandling Chain If Error Occurs)

The Compare response to message property and take different actions on result (enable
ErrorHandling chain if error occurs) script checks for data that has been previously
entered into a message property (in this case something from a message header). This
script structure is useful for error handling. If the response matches, continue with the
test. If the response doesn’t match the expected response, output an error or stop the
test. This approach for error handling is powerful because it doesn’t rely on hard-coded
values in the script. Instead, the matching is done on variables placed in individual
messages.

This approach for error handling is powerful because it doesn’t rely on hard-coded
values in the script. Instead, the matching is done on variables placed in individual
messages.

var msg = $context.currentItem.previousItem;

var responseData = msg.getResponse(msg.RESPONSE_HTTP_HEADER, "Server”™);

$context.result.postMessage(Scontext.result.LEVEL INFO, "responseData: " + responseData);

var preStoredMessageProperty = msg.propertyList.getPropertyValue('myProp”);
$context.result.postMessage($context.result.LEVEL INFO, “"preStoredMessageProperty: " + preSt

if (responseData == preStoredMessageProperty)

{
}

else

{

$context.result.postMessage($context.result.LEVEL INFO, "Response DOES match™);

$context.result.postMessage($context.result.LEVEL ERROR, "Response DOES MOT match");

Set the context var msg = $context.currentItem.previousItem;
to the prior
message.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_27.html
http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_27.html

Get 'Server'
response header
from prior
response. This
example
assumes a
"Server: Apache"
response header

var responseData =
"Server") ;

msg.getResponse (msg.RESPONSE HTTP_HEADER,

Put the 'Server’
response header
in script
log/events list.

$context.result.postMessage ($context.result.LEVEL_ INFO,
"responseData: " + responseData) ;

Put contents of
message
property
(myProp) from
prior message
into a variable
and output to
script log/events
list. Message
property is
nanled'myProp'
with contents of
'Apache’; failure
case has
property
contents of 'Not
Apache'.

var preStoredMessageProperty =
msg.propertyList.getPropertyValue ("myProp") ;

Scontext.result.postMessage ($context.result.LEVEL INFO,
"preStoredMessageProperty: " + preStoredMessageProperty) ;

Compare
response to
message
property and
take appropriate
path.

if (responseData == preStoredMessageProperty)

{

S$context.result.postMessage ($context.result.LEVEL INFO,
"Response DOES match") ;

}

else

Scontext.result.postMessage ($context.result.LEVEL ERROR,
"Response DOES NOT match") ;

Setall
subsequent
messages to NOT

play.

var nextItem = Scontext.currentlItem.nextItem;

while (nextItem != null)

{

nextItem.setRepeat (nextItem.REPEAT TIMING SERIAL,
nextItem.REPEAT TYPE COUNT_ CONSTANT, O,
nextItem.REPEAT_DISTRIBUTION_CONSTANT, O0);

nextItem = nextItem.nextItem;

}
Enable an chain = S$context.currentClip.getChild ("ErrorHandling") ;
n i n
ErrorHandling)

. chain.setRepeat (

chain.

chain.REPEAT TIMING SERIAL,
Note: The
ErrorHandling chain.REPEAT TYPE COUNT CONSTANT,
chain was
disabled in the 1, // this means do it ONE time
clip by default chain.REPEAT DISTRIBUTION CONSTANT,

(i.e. serial repeat
:0)

Clear the
message
response from
memory since it
is no longer
needed.

}

msg.clearResponse () ;

Script 8: Try/Catch Example

Use this brief example script to develop an example of try/catch logic.

var msg = Scontext.currentlItem.previousIltem;
var authId;
var wasFound;

{
authId = msg.getResponse(msg.RESPONSE_HTTP_BODY AS JSON, "//authid")[0];

wasFound = true;
}
catch [e)
{
wasFound = false;

}

if (wasFound)

Usetry/catchto var msg = Scontext.currentItem.previousItem;
var authId;

search a JSON var wasFound;
message try
response authrd =
seardnngfor msg.getResponse (msg.RESPONSE HTTP BODY AS JSON,
authid. "//authid") [0] ;
wasFound = true;
}
catch (e)

Optionally, check wasFound = false;
the value of
"e.toString()"to | if (wasFound)
see if is
whatever error
is returned when
the item is not // Do something else here (not found).
found. This catch
will catch all
errors.

// Do something here (found).

else

Target/Hostname Modification Scripts

Script 1: Handle Dynamic HTTP 302 Redirects

The Handle dynamic HTTP 302 redirects script is used to detect a redirect (HTTP 302) in
the test and set the next message’s target so subsequent requests go to that new
hostname. This script looks to see if the response code was 302. If so, it resets the target

of the next message to use the host name and service path specified by the Location
header

Get the Message that immediately precedes this Script.
var msg = Scontext.currentItem.previocusItem;

var origText = msg.getResponse(msg.RESPONSE_TEXT);

var pos = origText.indexOf("HTTP/1.1 302 Found");
f (posa == =1)

o futa

Scontext.result.postMessage(Scontext.result.LEVEL _INFO, "did not find 302");

var firstPos = origText.indexOf("Location: ");
firstPos = origText.index0f("http", firstPos + 1);

var lastPos = origText.indexOf("'n", firstPos + 1);

var location = origText.substring(firstPos, lastPos);

i R BRI RS BeRRrE e L PRES R hamnt A SaE T R

var doubleSlashPos = location.indexQf("//");

firstSlashPos = location.indexQf("/", doubleSlashPos + 2);
extract out the host name and the service path from the

Getthelnessage var origText = msg.getResponse (msg.RESPONSE TEXT) ;

that precedes
this script.

Deternlhleifthe var pos = origText.indexOf ("HTTP/1.1 302 Found") ;

. if (pos == -1)
responseis an {
HTTP 302 Scontext.result.postMessage ($Scontext.result.LEVEL INFO, "did
redirect not find 302");
' }
else

{

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_34.html

Get the value of
the Location

var firstPos = origText.indexOf ("Location: ") ;
firstPos = origText.indexOf ("http", firstPos + 1);

header and the var lastPos = origText.indexOf ("\n", firstPos + 1);
following

protocol var location = origText.substring(firstPos, lastPos) ;
Separatethe var doubleSlashPos = location.indexOf("//");

host name and
service path.

firstSlashPos = location.indexOf ("/", doubleSlashPos + 2);

Extract the host
name and the
service path

var hostName
firstSlashPos) ;

location.substring(doubleSlashPos + 2,

var servicePath = location.substring(firstSlashPos) ;

from the

location.
Scontext.currentItem.nextItem.target.systemPropertyList.setPrope

Set the host rtyValue ("HostName", hostName) ;

name and

serviceljaﬂ1for Scontext.currentItem.nextItem.target.systemPropertyList.setPrope
rtyValue ("ServicePath", servicePath) ;

the target of the |,

next message.

Script 2: Override a Target’s URL for the Instance of a Clip

The change this script makes persists across serial repeats of a clip. This script sets the
target for the message immediately after this script. Since it is setting the target’s URL, all
messages that use that target use this new URL.

var hostname = 'new_hostname.company.com';
$context.result.postMessage ($context.result.LEVEL_ INFO, "hostname: " + hostname) ;

Scontext.currentItem.nextItem.target.systemPropertyList.setPropertyValue ("HostName",
hostname) ;

Script 3: Override a target’s use of HTTP/HTTPS for the instance of a clip

This script overrides a target to either use or not use SSL (i.e. HTTP to HTTPS or vice
versa).

Scontext.currentItem.nextItem.target.systemPropertyList.setPropertyValue ("UseSSL",
“true”) ;

Script 4: Host Override in Header

In some situations when an application is deployed to a non-production environment, an
IP address must be used to reach that environment (i.e. the target location is an IP
address). However, the application may only respond to requests where the HTTP
Request Headers include the correct hostname in the host header. This script alters the
host header to include the appropriate hostname, but sends the message to the IP
address. The alternative to using this script would be entering a HOSTS file entry
manually on each load server.

Put the one-line script in the test clip just before the first message that utilizes the target
that needs to have the host override header in it. More information can be found in the
FAQ, How do I override the value of the HTTP host header in requests?

Scontext.currentItem.nextItem.target.systemPropertyList.setPropertyValue ("HttpHostOv
erride", "www.optimizedennys.com") ;

http://cloudlink.soasta.com/t5/Knowledge-Base/How-do-I-override-the-value-of-the-HTTP-Host-header-in-requests/ba-p/482

Miscellaneous Scripts

Script 1: Stop Test Clips (and Optionally Clip Repeats) via Script

In those cases where you need a script to skip playing the remainder of the current
repeat of the current test clip, you would do:

Scontext.currentClip.end() ;

If the clip was serially repeating and you want to end it completely, including stopping it
from repeating any further, you would do:

Scontext.currentClip.end() ;
Scontext.currentClip.endRepeat () ;

If the clip was serially repeating and you wanted the current repeat to finish, but not
repeat any more after that, you would do:

Scontext.currentClip.endRepeat () ;

Optionally, if you want to cause the container to error out, supply error text like in the
following example:

Scontext.currentClip.end ("There was an Error");

Script 2: Clear Response from Prior Message

The last line of this script (msg.clearResponse () ;) is the main part of this script. It is
useful for ensuring that large responses do not stay in memory if they are no longer
needed.

var msg = Scontext.currentItem.previousItem;
msg.clearResponse () ;

Script 3: Random Think Times

The Random Think Times script resets all subsequent delays to have a random think
time between the interval specified in the script below. If you want to set all delays to
zero, just set both the minimum and maximum delay times to zero.

processItem($context.currentClip);

function processItem(parentItem)

{

24000;
32000;

var minDelayTime
var maxDelayTime

if (parentItem == null)

return;

var children = parentItem.children;
if (children == null)

return;

var child;
var randomDelayTime;
for (var i = 0; i < children.length; i++)

child = children[i];

if (child != null)
if (child.type == "Delay")
randomDelayTime = new String(minDelayTime + Math.max(Math.round(Math.random() * (maxDelayTime - minDelayTime)), 0));
child.systemPropertylList.setPropertyValue(| "Duration”, randomDelayTime.split(".")[0]);

}

name

Line 1 creates a processItem($Scontext.currentClip) ;

currentClip
context for a
function,
processItem,
that is defined in
the subsequent
lines of the
script.

Line 3 creates function processItem(parentItem)

the function,
processItem,
which is then
defined in the
remainder of
this script.

Lines 6-7 define var minDelayTime 24000; //default = 24000
.. var maxDelayTime = 32000; //default = 32000
the minimum

and maximum
delay times that

bound the think
times.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_18.html

Lines 9-24 if (parentItem == null)

specify that if the returni

parentItemis var children = parentItem.children;
not null then the if (children == null)

variables, return;

children and var child;

randomDelayTim var randomDelayTime;

e, will be em- for (var i = 0; i < children.length; i++)
ployed according {
child = children|[i];
to t}_le formula if (child != null)
on line 21. {
if (child.type == "Delay")

{

: - randomDelayTime = new String(minDelayTime +
Lines 26-27 set Math.max (Math.round (Math.random() * (maxDelayTime -

the random minDelayTime)), 0));

duration for any child.systemPropertyList.setPropertyValue ("Duration",
randomDelayTime.split (".") [0]) ;

delays.

Script 4: Abort a Script and Consider It an Error with Custom Error Text

This short script immediately aborts play of the current Script, and considers the Script
to have failed with the given error text.

If no error text is provided, the text “Script aborted.” is used. So, for example, in those
cases where the eval /throw statement is used (such as in the Validation Scripts above),
you could instead do:

Scontext.abortScript ("Error text here");

Script 5: Encoding Text

The Encoding Text script exemplifies how to URL encode text. This is useful in cases
where certain characters like a plus sign (+) need to be encoded to go on a URL - as %2B.
This script is also useful because it shows how to create a function that performs the
encoding. This function can be called multiple times in the script.

pil tion encodeViewState(str) {
return escape(str).replace(/\+/g, %2B").replace(/*/g, "%2A").replace(/=/g, %*3D").replad

}

var msg = Scontext.currentItem.previousItem;
var viewStateValue= msg.getResponse (msg.RESPONSE HTTP BODY AS HTML, "//*[fname='com.saled

viewStateValue=encodeViewState (viewStateValue);

Sprop.set("MessageClip”, "viewState", wviewStateValue);

$context.result.postMessage($context.result.LEVEL_INFO, "viewState: + viewStatevValue);

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_19.html

Lines 1-3 create

a function,
encodeViewStar

t (str), and then
uses a regular
expression to
perform that
encoding.

function encodeViewState (str) {

return escape (str) .replace(/\+/g, '%$2B') .replace(/*/g,

'$2A"') .replace(/=/g, '%3D') .replace(/:/g, '$3A"') .replace(/;/g, '%3B
') .replace (/\//g, '%2F');

}

Line 5 sets the
context of msg to
the
previousItem,
while line 6
defines the
extraction path
from the HTML
response.

var msg = Scontext.currentItem.previousItem;

var viewStateValue=

msg.getResponse (msg.RESPONSE HTTP_ BODY AS HTML,

"//* [@name="'com.salesforce.visualforce.ViewState'] /@value") [0];

Line 10 specifies
that

viewStateValue
is equal on the
encoded string.

viewStateValue=encodeViewState (viewStateValue) ;

Line 12 sets a
property to store
the encoded
value and line 14
posts a message
to results.

Sprop.set ("MessageClip", "viewState", viewStateValue) ;

Scontext.result.postMessage ($context.result.LEVEL_ INFO,
"viewState: " + viewStateValue) ;

Another example of using the replace function to do encoding is presented below. This
second script uses different statements for each replacement rather than combining
them together (as the first example shows).

var msg =
var origText =
var newText =

Scontext.currentItem.previousItem;
msg.getResponse (msg.RESPONSE TEXT) ;
origText.substring(pos + 6);

newText = newText.replace ("$2F","/","g");
newText = newText.replace("+","%2B","g");
newText = newText.replace("%3D","=",6"g");

Sprop.set ("MessageClip",

"ID", newText) ;

Script 6: Math Calculations using “ISSE” Expressions

The example script below is not run in a separate script object - it is run directly in the
query string parameter of a message. In this example, it is adding the VUNumber

property value to 500. Note: all properties are a string, so the property needs to be
converted to a number before it can be used in math calculations.

{$%expr:
Math.floor (Number (Scontext.currentTrack.systemPropertyList.getPropertyValue (
"VUNumber")) + 500).toString() %%}

Script 7: Extract All Links from a Given Response

This brief script creates an array with all of the values of the HREF tags in the response.

var links = msg.getResponse (msg.RESPONSE TEXT AS HTML, "//@href");
var details = links.length +" "+ links.join() ;
Scontext.result.postMessage ($context.result.LEVEL INFO, "Links", details) ;

Note that Line 2 above prints the values in the result as a comma-separated list.
Alternately, this code could be used in place of line 2:

for(var i = 0; i < links.length; i++)
{

var text = links[i];

if (text.charAt (0) != '#')

{

}
}

Scontext.result.postMessage ($context.result.LEVEL INFO, text);

Script 8: Determine Dates 30 and 31 Days from Now

The Determine dates 30 and 31 days from now script calculates today's date in the
individual pieces of month, day, and year in both 2 and 4 digits. It then calculates two
other dates in individual parts based on today's date. These two dates are 30 and 31 days
into the future from today's date.

var today = new Date();
Scontext.result.postMessage($context.result.LEVEL_INFO, “"Today = "+today);
var currentMonth = today.getMonth() + 1;

currentMonth = currentMonth.toString();

if(l == currentMonth.length)

{ currentMonth = "0"+currentMonth;

}

var currentDay = today.getDate(]);
currentDay = currentDay.toString();

if(l == currentDay.length)
{

currentDay = "0"+currentDay;
}

var current¥Year = today.getFullYear();

var next¥Year = currentYear + 1;

currentYear = currentYear.toString();

nextYear = nextYear.toString();

var current2DigitYear = currentYear.toString().substring(2);

var todayInMillis = Date.parse(today.toString());

var thirtyDaysInMillis = 1000 * 60 * 60 # 24 * 30;

var thirtyOneDaysInMillis = 1000 * 60 = 60 = 24 = 31;

var thirtyDaysInTheFutureInMillis = today.getTime() + thirtyDaysInMillis;

var thirtyOneDaysInTheFutureInMillis = today.getTime() + thirtyOneDaysInMillis;
Line 1 viewStateValue=encodeViewState (viewStateValue) ;
establishes the

variable, today,
which gets the
current date.

Line 5 var currentMonth = today.getMonth() + 1;
establishes the currentMonth = currentMonth.toString/()
variable,

currentMonth,

which gets the
current month.

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_20.html

Script 9: Reading a Clip Property into a Test

The following brief script reads a clip property into a test using a variable.

var auth id = $prop.value("MessageClip", "auth id");

Script 10: Trim Spaces in a String

The following brief script is used to trim spaces from a string.

function trim(stringToTrim) {

return stringToTrim.replace (/*\s+|[\s+$/g,"");
1
function ltrim(stringToTrim) {
return stringToTrim.replace (/"\s+/,"");
!
function rtrim(stringToTrim) {
return stringToTrim.replace (/\s+$/,"");
1

Script 11: Conditional Logic using Chains and Random Numbers

The Conditional Logic using Chains and Random Numbers script plays a chain 10% of the
time and turns it off the remaining 90% of the time.

generateRandomNumber (lowerExtreme, upperExtreme) {
return floor (| .random() * (upperExtreme - lowerExtreme))
+ lowerExtreme);

}

chain = Scontext.currentClip.getChild("DeleteMovie”);

numl = """ + generateRandomMNumber(1,11);
Scontext.result.postMessage($context.result.LEVEL_INFO, "RandomNum=",
numl);
if (numl != 1)

{

chain.setRepeat|

http://cdn.soasta.com/findouthow/scripts/other_script_examples_source1_36.html

Lines 12-14
generate a
random integer
contained within
the two
extremes.

function generateRandomNumber (lowerExtreme, upperExtreme)
return Math.floor ((Math.random() * (upperExtreme -

lowerExtreme))

+ lowerExtreme) ;

Line 20 creates a
variable, chain,

var chain = $context.currentClip.getChild("DeleteMovie") ;

above to play the
clip, otherwise
set it to 0 using
setRepeat.

that gets the
child of the name
specified.
: _ var numl = "" + generateRandomNumber (1,11) ;
Lines 23-25 $context.result.postMessage ($context.result.LEVEL_ INFO,
generate a "RandomNum=",
random number | 2v™t) i
between 1-10.
Use the var, if (numl!=1)
numl, from {

chain.setRepeat(
chain.REPEAT_TIMING_SERIAL,
chain.REPEAT_TYPE_COUNT_CONSTANT,
0, //THIS means do it ZERO times
chain.REPEAT_DISTRIBUTION_CONSTANT,
0);

Script 12: Replace Spaces with Plus (+) Signs

This simple script replaces any spaces in the school id variable with + signs.

var school id =

school id.replace(/\s+/g,'+');

Such a script is used in cases where parameterized data (i.e. from a CSV file) has spaces in
the field, but POST data requires that these spaces be converted to plus signs (+).

Script 13: Dynamically Set Chain Repeats

This script sets the number of chain repeatsto 10 dynamically during test execution.

// This Script sets the repeat specifications
// for the chain that follows it in the Clip.

var chain = $context.currentItem.nextItem;

chain.setRepeat (chain.REPEAT TIMING SERIAL,
chain.REPEAT TYPE COUNT CONSTANT, 10, chain.REPEAT DISTRIBUTION CONSTANT,
0);

Scontext.result.postMessage ($context.result.LEVEL INFO,
item: " + chain.name) ;

"Set repeat spec for

Script 14: Retrieve the Current Cookie Values

This Script retrieves the current cookie values and displays them in the Result:

var cookies = Scontext.currentClip.targets[0].cookies;
if (cookies == null)
{

Scontext.result.postMessage ($Scontext.result.LEVEL INFO, "No cookies.");

}

else
var text = "";
for each (var cookie in cookies))
text += "name=" + cookie.name + ", ";
text += "domain=" + cookie.domain + ", ";
text += "path=" + cookie.path + ", ";

text += "value=" + cookie.value + ", ";
text += "expirationDate=" + cookie.expirationDate + ", ";
text += "secure=" + cookie.secure + "\n";

}

$context.result.postMessage ($context.result.LEVEL_ INFO, cookies.length + "
cookies.", text);

}

Script 15: Replace the Cookie List with a New List

This script that replaces the entire current cookie list with a new list that contains two
cookies named “MyCookiel” and “MyCookie2”:

var newlList = new Array();

var cookie = new Object () ;

cookie.name = "MyCookiel";
cookie.domain = "myhostname";
cookie.path = "/some/path";
cookie.value = "Value of MyCookiel";

cookie.expirationDate = new Date ("05 Aug 2030 00:00:00 GMT") ;
cookie.secure = false;
newList [0] = cookie;

cookie = new Object () ;

cookie.name = "MyCookie2";
cookie.domain = "myhostname";
cookie.path = "/some/path";
cookie.value = "Value of MyCookie2";

cookie.expirationDate = new Date ("05 Aug 2030 00:00:00 GMT") ;
cookie.secure = false;

newList [1] = cookie;

Scontext.currentClip.targets[0] .cookies = newlList;

Script 16: Find the Current Cookie and Change Its Value

This script that finds the current cookie named “ChocolateChip” and changes it’s value to
(l42l5:

var list = S$context.currentClip.targets[0].cookies;

if (list != null)

{

for each (var cookie in list)

{

if (cookie.name == "ChocolateChip")

{

cookie.value = "42";

$context.result.postMessage ($context.result.LEVEL INFO, "Cookie value
replaced.") ;

break;
Scontext.currentClip.targets[0] .cookies = list;

Script 17: Add a New Cookie to the Cookie List

This script that adds new cookie named “ChocolateChip” to the current cookie list:

var list = Scontext.currentClip.targets[0].cookies;

if (list == null)
list = new Array();

var cookie = new Object () ;

cookie.name = "ChocolateChip";
cookie.domain = "myhostname";
cookie.path = "/my/path";

cookie.value = "Cookie value";

cookie.expirationDate = new Date ("05 Aug 2030 00:00:00 GMT") ;
cookie.secure = false;

list[list.length] = cookie;

Scontext.currentClip.targets[0] .cookies = list;

Script 18: Set only the next delay to a random value

This script is a variation of the Random Think Times script. The Random Think Times
script resets ALL delays. This script resets JUST the next one.

var nextItem = $context.currentItem.nextItem;

var minDelayTime = 24000; //default = 24000
var maxDelayTime = 36000; //default = 32000

randomDelayTime = new String(minDelayTime + Math.max (Math.round(Math.random() *
(maxDelayTime - minDelayTime)), 0));
nextItem.systemPropertyList.setPropertyValue ("Duration",
randomDelayTime.split (".") [0]) ;

Script 19: Check for 200 status code; stop clip if not found

This script detects an HTTP 200 status code and stops the test clip if that code is not
found.

var msg = $context.currentItem.previousltem;

var StatusCode = msg.getResponse (msg.RESPONSE HTTP_ STATUSCODE) ;
if (StatusCode != 200){

Scontext.result.postMessage ($Scontext.result.LEVEL INFO, "Not an HTTP 200
response; clip end");
Scontext.currentClip.end () ;

}

SOASTA Extension Reference

This reference is provided as a convenience for script authors using this guide.

Refer to the Script Reference API (Latest Build) for a complete up-to-date
reference to the latest script options in CloudTest.

Refer to the Cloudlink Documentation page, Release Notes section for a given
build—the reference for the specific build is in the row for any given release.

Context Object (Scontext)

Contains the object model that represents the Composition.

Context Properties

All of the following Context properties are read only.

composition

The “Composition” object that represents the top of the Composition object
model.

result

The “Result” object that represents the Result being produced for the currently
playing Composition.

currentItem

The object that represents the current context in which the current Script is
executing. For Script objects in Clips, Chains, Groups or Pages, this will always
be the Script object itself. When scripting is used in an “In Situ Substitution
Expression” (ISSE), this will be the object containing the ISSE (such as the
Message).

currentBand

A “Band” object that represents the current Band according to the context in
which the current script is executing. Null if there is no current Band.

currentBandIndex

An integer value that represents the “repeat index” of the current Band if the
current Band repeats, according to the context in which the current script is

http://cdn.soasta.com/productresource/download/jsDoc/latest/index.html
http://cloudlink.soasta.com/t5/Documentation/bg-p/Documentation

executing. The first repeat starts at index zero. The value is -1 if there is no
current Band or the current Band does not repeat or has a repeat count of one.

currentBandPlayNumber

An integer value that represents the “play ordinal number” of the current
Band. Starting with the number 0, each play of the Band is assigned a unique
number. The numbers are contiguous (no gaps). The value is -1 if there is no
current Band.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentTrack

A “Track” object that represents the current Track according to the context in
which the current script is executing. Null if there is no current Track.

currentTrackIndex

An integer value that represents the “repeat index” of the current Track if the
current Track repeats, according to the context in which the current script is
executing. The first repeat starts at index zero. The value is -1 if there is no
current Track or if the current Track does not repeat or has a repeat count of
one (in other words, it is -1 if it doesn’t actually repeat).

currentTrackPlayNumber

An integer value that represents the “play ordinal number” of the current
Track. Starting with the number 0, each play of the Track is assigned a unique
number. The numbers are contiguous (no gaps). The value is -1 if there is no
current Track.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentClip

A “Clip” object that represents the current Clip according to the context in
which the current script is executing. Null if there is no current Clip.

currentClipIndex

An integer value that represents the “repeat index” of the current Clip if the
current Clip repeats, according to the context in which the current script is
executing. The first repeat starts at index zero. The value is -1 if there is no
current Clip or if the current Clip does not repeat or has a repeat count of one
(in other words, it is -1 if it doesn’t actually repeat).

currentClipPlayNumber

An integer value that represents the “play ordinal number” of the current Clip.
Starting with the number 0, each play of the Clip is assigned a unique number.
The numbers are contiguous (no gaps). The value is -1 if there is no current
Clip.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentChain

A “Chain” object that represents the current Chain according to the context in
which the current script is executing. Null if there is no current Chain.

currentChainIndex

An integer value that represents the “repeat index” of the current Chain if the
current Chain repeats, according to the context in which the current script is
executing. The first repeat starts at index zero. The value is -1 if there is no
current Chain or if the current Chain does not repeat or has a repeat count of
one (in other words, it is -1 if it doesn’t actually repeat).

currentChainPlayNumber

An integer value that represents the “play ordinal number” of the current
Chain. Starting with the number 0, each play of the Chain is assigned a unique
number. The numbers are contiguous (no gaps). The value is -1 if there is no
current Chain.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentGroup

A “Group” object that represents the current Group according to the context in
which the current script is executing. Null if there is no current Group.

currentGroupIndex

An integer value that represents the “repeat index” of the current Group if the
current Group repeats, according to the context in which the current script is
executing. The first repeat starts at index zero. The value is -1 if there is no
current Group or if the current Group does not repeat or has a repeat count of
one (in other words, it is -1 if it doesn’t actually repeat).

currentGroupPlayNumber

An integer value that represents the “play ordinal number” of the current
Group. Starting with the number 0, each play of the Group is assigned a
unique number. The numbers are contiguous (no gaps). The value is -1 if
there is no current Group.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentPage

A “Page” object that represents the current Page according to the context in
which the current script is executing. Null if there is no current Page.

currentPageIndex

An integer value that represents the “repeat index” of the current Page if the
current Page repeats, according to the context in which the current script is
executing. The first repeat starts at index zero. The value is -1 if there is no

current Page or if the current Page does not repeat or has a repeat count of
one (in other words, itis -1 if it doesn’t actually repeat).

currentPagePlayNumber

An integer value that represents the “play ordinal number” of the current Page.
Starting with the number 0, each play of the Page is assigned a unique number.
The numbers are contiguous (no gaps). The value is -1 if there is no current
Page.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentIf

An “If” object that represents the current If according to the context in which
the current script is executing. Null if there is no current If. If nested within
multiple Ifs, this is the lowest-level If (the If “nearest to” the Script in terms of
the parentage hierarchy).

currentIfIndex

An integer value that represents the “repeat index” of the current If if the
current If repeats, according to the context in which the current script is
executing. The first repeat starts at index zero. The value is -1 if there is no
current If or if the current If does not repeat or has a repeat count of one (in
other words, it is -1 if it doesn’t actually repeat).

currentIfPlayNumber

An integer value that represents the “play ordinal number” of the current If.
Starting with the number 0, each play of the If is assigned a unique number.
The numbers are contiguous (no gaps). The value is -1 if there is no current If.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentSwitch

A “Switch” object that represents the current Switch according to the context
in which the current script is executing. Null if there is no current Switch. If
nested within multiple Switches, this is the lowest-level Switch (the Switch
“nearest to” the Script in terms of the parentage hierarchy).

currentSwitchIndex

An integer value that represents the “repeat index” of the current Switch if the
current Switch repeats, according to the context in which the current script is
executing. The first repeat starts at index zero. The value is -1 if there is no
current Switch or if the current Switch does not repeat or has a repeat count of
one (in other words, it is -1 if it doesn’t actually repeat).

currentSwitchPlayNumber

An integer value that represents the “play ordinal number” of the current
Switch. Starting with the number 0, each play of the Switch is assigned a
unique number. The numbers are contiguous (no gaps). The value is -1 if
there is no current Switch.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentTransaction

A “Transaction” object that represents the current Transaction according to
the context in which the current script is executing. Null if there is no current
Transaction. If nested within multiple Transactions, this is the lowest-level
Transaction (the Transaction “nearest to” the Script in terms of the parentage
hierarchy).

currentTransactionIndex

An integer value that represents the “repeat index” of the current Transaction
if the current Transaction repeats, according to the context in which the
current script is executing. The first repeat starts at index zero. The value is -
1 if there is no current Transaction or if the current Transaction does not
repeat or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

currentTransactionPlayNumber

An integer value that represents the “play ordinal number” of the current
Transaction. Starting with the number 0, each play of the Transaction is
assigned a unique number. The numbers are contiguous (no gaps). The value
is -1 if there is no current Transaction.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentMessage

A “Message” object that represents the current Message according to the
context in which the current script is executing. Null if there is no current
Message.

currentMessageIndex

An integer value that represents the “repeat index” of the current Message if
the current Message repeats, according to the context in which the current
script is executing. The first repeat starts at index zero. The value is -1 if there
is no current Message, or if the current Message does not repeat or has a
repeat count of one (in other words, it is -1 if it doesn’t actually repeat).

currentMessagePlayNumber

An integer value that represents the “play ordinal number” of the current
Message. Starting with the number 0, each play of the Message is assigned a
unique number. The numbers are contiguous (no gaps). The value is -1 if
there is no current Message.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentBrowserAction

A “BrowserAction” object that represents the current Browser Action
according to the context in which the current script is executing. Null if there
is no current Browser Action.

currentBrowserActionIndex

An integer value that represents the “repeat index” of the current Browser
Action if the current Browser Action repeats, according to the context in which
the current script is executing. The first repeat starts at index zero. The value
is -1 if there is no current Browser Action or if the current Browser Action
does not repeat or has a repeat count of one (in other words, itis -1 if it
doesn’t actually repeat).

currentBrowserActionPlayNumber

An integer value that represents the “play ordinal number” of the current
Browser Action. Starting with the number 0, each play of the Browser Action
is assigned a unique number. The numbers are contiguous (no gaps). The
value is -1 if there is no current Browser Action.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentCheckpoint

A “Checkpoint” object that represents the current Checkpoint according to the
context in which the current script is executing. Null if there is no current
Checkpoint.

currentDelay

A “Delay” object that represents the current Delay component according to the
context in which the current script is executing. Null if there is no current
Delay component.

currentScript

A “Script” object that represents the current Script component in the
Composition according to the context in which the current script is executing.
Null if there is no current Script component.

currentScriptIndex

An integer value that represents the “repeat index” of the current Script
component if the current Script component repeats, according to the context
in which the current script is executing. The first repeat starts at index zero.
The value is -1 if there is no current Script or if the current Script does not
repeat or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

currentScriptPlayNumber

An integer value that represents the “play ordinal number” of the current
Script. Starting with the number 0, each play of the Script is assigned a unique
number. The numbers are contiguous (no gaps). The value is -1 if there is no
current Script.

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

currentTarget

A “Target” object that represents the current Target according to the context
in which the current script is executing. Null if there is no current Target.

validationValue

[f the current Script was called to perform validation for Message or Browser
Action response, this property contains the value to be validated. If the Script
was called to perform overall validation, this will be the entire response,
otherwise it will be the specific portion of the response that is to be validated.

Note that the Script also has access to the response through the methods of the
Message or Browser Action object.

If the current Script was not called to perform validation, this value will be
null.

userName

The user ID of the user that started the current Composition playing.

locationName

The name of the location (from the Server List) on which the Composition is
playing. If the Composition is playing on multiple Maestro servers, this will be
the name of the location of the particular server that this Script is playing on.

serverName

The name of the server (from the Server List) on which the Composition is
playing. If the Composition is playing on multiple Maestro servers, this will be
the name of the particular server that this Script is playing on.

serverType

The type of the server (from the Server List) on which the Composition is
playing (“General” or “Load”). If the Composition is playing on multiple
servers, this will be the type of the server on which the current Script is

playing.

Note that this is not necessarily the same as the “Load mode” setting in the
Composition Editor. Itis possible to play a Composition that is in “Load mode”
on a General server, and it is also possible to play a Composition that is not in
“Load mode” on a Load server. Those two things are not the same.

Context Methods
void abortScript (string errorText)

Immediately aborts play of the current Script, and considers the Script to have
failed with the given error text. If no error text is provided, the text “Script
aborted.” is used.

Array readFromURL (string url, string format,

boolean useCache)

Note: This function has been replaced by the "readFromURL" function on
the SystemUtilities object, and is maintained here only for backwards
compatibility.

http://cdn.soasta.com/productresource/download/jsDoc/latest/symbols/SystemUtilities.html

CustomProperties (Sprop)

Provides an easy shortcut for accessing the Custom Properties in the Composition
without having to traverse the object model.

CustomProperty Methods

string value (string pathType, string propertyPath)

Returns the value of the specified Custom Property.

The “pathType” parameter value specifies the “starting point” of the path,
relative to the current context in which the current Script is running. It can be
any of the following values (case is not significant):

“Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

“Band”

The path is relative to the current Band in which the Script is executing.
“Track”

The path is relative to the current Track in which the Script is executing.
“MessageClip” or “Clip” (either one is accepted)

The path is relative to the current Clip in which the Script is executing. If
the Script is nested within multiple Clips, the path is relative to the lowest-
level containing Clip (the Clip “nearest to” the Script in terms of the
parentage hierarchy).

“Chain”

The path is relative to the current Chain in which the Script is executing. If
the Script is nested within multiple Chains, the path is relative to the
lowest-level containing Chain (the Chain “nearest to” the Script in terms of
the parentage hierarchy).

“G-roup"

The path is relative to the current Group in which the Script is executing. If
the Script is nested within multiple Groups, the path is relative to the

lowest-level containing Group (the Group “nearest to” the Script in terms
of the parentage hierarchy).

e “Transaction”

The path is relative to the current Transaction in which the Script is
executing. If the Script is nested within multiple Transactions, the path is
relative to the lowest-level containing Transaction (the Transaction
“nearest to” the Script in terms of the parentage hierarchy).

° “If"

The path is relative to the current If in which the Script is executing. If the
Script is nested within multiple Ifs, the path is relative to the lowest-level
containing If (the If “nearest to” the Script in terms of the parentage
hierarchy).

e “Switch”

The path is relative to the current Switch in which the Script is executing.
If the Script is nested within multiple Switch, the path is relative to the
lowest-level containing Switch (the Switch “nearest to” the Script in terms
of the parentage hierarchy).

e “Page”

The path is relative to the current Page in which the Script is executing.
o “Message”

The path is relative to the current Message in which the Script is executing.
e “Browser Action”

The path is relative to the current Browser Action in which the Script is
executing.

e “Destination”

The path is relative to the current Message or Browser Action in which the
Script is executing. Once the item is found, the result is to be the item’s
Target.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void set (string pathType, string propertyPath, var
newValue)

Sets a new value into the specified Custom Property.

The “pathType” and “propertyPath” parameters are the same as for the “value”
method, above.

The “newValue” parameter is the new value for the property. It can be null.
(The “undefined” value is treated as null.)

SystemProperties (Ssysprop)

Provides an easy shortcut for accessing the System Properties in the Composition
without having to traverse the object model.

System Property Methods
string value (string pathType, string propertyPath)
Returns the value of the specified System Property.

The “pathType” parameter value specifies the “starting point” of the path,
relative to the current context in which the current Script is running. It can be
any of the following values (case is not significant):

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

e “Band”

The path is relative to the current Band in which the Script is executing.
e “Track”

The path is relative to the current Track in which the Script is executing.
e “MessageClip”or “Clip” (either one is accepted)

The path is relative to the current Clip in which the Script is executing. If
the Script is nested within multiple Clips, the path is relative to the lowest-
level containing Clip (the Clip “nearest to” the Script in terms of the
parentage hierarchy).

e “Chain”

The path is relative to the current Chain in which the Script is executing. If
the Script is nested within multiple Chains, the path is relative to the
lowest-level containing Chain (the Chain “nearest to” the Script in terms of
the parentage hierarchy).

“Group"

The path is relative to the current Group in which the Script is executing. If
the Script is nested within multiple Groups, the path is relative to the
lowest-level containing Group (the Group “nearest to” the Script in terms
of the parentage hierarchy).

“Transaction”

The path is relative to the current Transaction in which the Script is
executing. If the Script is nested within multiple Transactions, the path is
relative to the lowest-level containing Transaction (the Transaction
“nearest to” the Script in terms of the parentage hierarchy).

HI f"

The path is relative to the current If in which the Script is executing. If the
Script is nested within multiple Ifs, the path is relative to the lowest-level
containing If (the If “nearest to” the Script in terms of the parentage
hierarchy).

“Switch”

The path is relative to the current Switch in which the Script is executing.
If the Script is nested within multiple Switch, the path is relative to the
lowest-level containing Switch (the Switch “nearest to” the Script in terms
of the parentage hierarchy).

“Page”

The path is relative to the current Page in which the Script is executing.
“Message”

The path is relative to the current Message in which the Script is executing.
“Browser Action”

The path is relative to the current Browser Action in which the Script is
executing.

e “Destination”

The path is relative to the current Message or Browser Action in which the
Script is executing. Once the item is found, the result is to be the item'’s
Target.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void set (string pathType, string propertyPath, var
newValue)

Sets a new value into the specified System Property.

The “pathType” and “propertyPath” parameters are the same as for the “value”
method, above.

The “newValue” parameter is the new value for the property. It can be null.
(The “undefined” value is treated as null.) The value will be converted to a
string.

System Properties
Composition:

StartTimeMillis - Composition start time, expressed as the difference, in
milliseconds, between the start time and midnight, January 1, 1970 UTC

ServerNumber - The number of the current server for a multi-server
Composition. Ranges from zero to n-1, where n is the number of servers. Always
zero when the Composition runs all on one server.

Track:
VUNumber - The virtual user number represented by the Track
Message:

WSA-MessageID - For WSA (Web Services Addressing) messages, an IRI that
uniquely identifies this message in time and space. If this value is not explicitly set,
the system will create a unique ID for the message.

WSA-To - For WSA (Web Services Addressing) messages, an IRI for the
destination. If this value is not explicitly set, the system will create a value for the
message.

Browser Action:
Paraml - The value of the first Browser Action parameter.
Param2 - The value of the second Browser Action parameter.
Param3 - The value of the third Browser Action parameter.
Param4 - The value of the fourth Browser Action parameter.
Delay:

Type - Either “Constant” to indicate that this Delay has a fixed duration, or
“Random” to indicate that this Delay’s duration is chosen at random on each play.

Duration - If type is “Constant”, the duration for this Delay, in milliseconds. Not
used if type is “Random”.

Minimum - If type is “Random”, the minimum of the range from which durations
are to be randomly chosen, in milliseconds. Not used if type is “Constant”.

Duration - If type is “Random”, the maximum of the range from which durations
are to be randomly chosen, in milliseconds. Not used if type is “Constant”.

Target (HTTP or SOAP):

URL - Full URL. Setting this property also changes the HostName, ServicePath,
Port, and UseSSL properties.

HostName - Host name

ServicePath - Service path

Port - HTTP Port

UseSSL - True if SSL (https) is to be used.

UserName - HTTP Basic Authentication User name
Password - HTTP Basic Authentication User password

MaximumConnectionsPerHost - Maximum number of connections that will
be created for any particular host URI

MaximumTotalConnections - Maximum number of active connections for
this Target

ConnectionTimeout - Connection timeout, in milliseconds, zero means no
timeout

SocketReadTimeout - Socket read timeout, in milliseconds, zero means no
timeout

HttpHostOverride - String value to override a target's host value. See How
do | override host files for a load test?

HttpBinaryConversion — Integer to specify a binary conversion, such as in
the conversion of WCF info.

connectionRefresh — Maximum lifetime of a connection for reuse, in
seconds. If -1, no lifetime refresh is enforced.

connectionIdleRefresh — Maximum idle time for connection for reuse, in
seconds. If -1, no idle refresh is enforced.

UseOAuth — True if target uses OAuth authentication.
oauth consumer key — Customer key for OAuth authentication.

oauth consumer secret — For OAuth authentication, the current Consumer
Secret used to authenticate the Consumer to the Service Provider.

ocoauth token secret — Current token value for OAuth authentication.
oauth signature method — Signature method for OAuth authentication.
oauth signature — Current OAuth signature.

oauth timestamp — Current OAuth timestamp.

oauth_nonce - Current OAuth nonce.

oauth_callback - HTTP address for OAuth authentication callback.

oauth_callback_confirmed - Current value for OAuth authentication callback
confirmation.

oauth_verified - Current value for OAuth authentication callback verifier.

oauth_token - Current value for OAuth authentication callback token.
Target (JMS):

URL - JNDIURL.

ProviderName - JMS Provider name

DestinationName - Topic or Queue name

ConnectionFactoryName - Connection Factory name

JNDIUserName - JNDI user name

JNDIPassword - JNDI password

ConnectionFactoryUserName - Connection Factory user name

ConnectionFactoryPassword - Connection Factory password
Target (Browser):

StartingURL - Starting URL

BrowserType - Browser type

Conductor - Conductor Name

WaitTimeout - Wait timeout for a single wait condition in milliseconds

AllowNativeXPath - Whether to use the browser's native XPath for
evaluating locators

MouseSpeed - The number of pixels to move the mouse in drag and drop or
move events

WaitInterval - The interval on which to check for the wait condition
ActionTimeout - Action timeout in milliseconds

FirefoxProfle — The Firefox browser profile to set

System Utilities (Sutil)
A singleton object that provides various utilities for use by the Script.

Accessible through the $util constant.

System Utilities Methods
string decodeString (stringToDecode, decodingTypelndicator)
Returns the decoded string. Null if the input string was null or undefined.
The “stringToDecode” specifies the string to be decoded.
The “decodingTypelndicator” specfies the type of decoding to be done.
string encodeString (stringToEncode, encodingTypelIndicator)

Returns the encoded string. Null if the input string was null or undefined.

http://cdn.soasta.com/productresource/download/jsDoc/latest/symbols/_global_.html#$util

The “stringToEncode” specifies the string to be decoded.

The “EncodingTypelndicator” specfies the type of decoding to be done.
string generateRandomString(length, characterList)

Returns the generated string.

The “length” of the string to generate.

The “characterList” is a String containing the pool of characters from which
to generate the String. Normally each character would appear exactly once
in the list. However, if a character appears multiple times that will give it
greater weighting in the random selection and thus that character will tend
to appear more often.

string generateRandomStringAlpha (length)

Returns the generated string of alphabetic characters of the specified
length. The returned string will contain characters in the ranges A-Z and a-
Z.

The “length” of the string to generate.
string generateRandomStringAlphanumeric (length)

Returns the generated string of alphanumeric characters of the specified
length. The returned string will contain characters in the ranges A-Z, a-z, 0-
9.

The “length” of the string to generate.
string generateRandomStringDecimalDigits (length)

Returns the generated string of decimal digits of the specified length. The
returned string will contain characters in the range 0-9.

The “length” of the string to generate.
string generateRandomStringHexDigits (length)

Returns the generated string of of hexadecimal digits of the specified
length. The returned string will contain characters in the ranges A-F and 0-
0.

The “length” of the string to generate.

Array readFromURL (string url, string format,

boolean useCache, connectionTimeout,
readTimeout)

Reads data from a CSV file (resource) at the specified URL, and returns that
data as an array of strings.

Each element in the returned array represents a row in the file. For any row
that contains multiple values, the value for that row is a nested array of the
values in that row.

The “url” parameter is the URL to read from.

The “format” parameter is optional, but if specified must be the string “CSV”,
which is the only value currently supported.

The “useCache” parameter is optional. If the value is true, the data that is read
is cached in memory, so that subsequent reads from the same URL in the same
play of the Composition will retrieve the data from memory rather than re-
reading from the URL. If the value is false, the data will be read from the URL
on every call. If this parameter is omitted or null, true is assumed.

Example 1
If you use the following form:

var dataList =
$util.readFromURL("http://www.myhost.com/directory/file.csv", “CSV”,
true);

It will be read once on each server.

If you pass in false for the third parameter (or leave off the third parameter), it
will be read every time.

http://www.myhost.com/directory/file.csv

Example 2

To read from a file at “http://host/files/Locations.csv”, the following call
would be made:

var locationList =
$util.readFromURL (“*http://host/files/Locations.csv”) ;

If the file contained the following lines:
San Francisco,CA,94103
Timbuktu
Caribou, Aroostook County,Maine, USA

Hill Valley,CaA, 91905

The following array of strings would be returned:

locationList [0] [0] San Francisco
locationList[0] [1] (67:1
locationList [0] [2] 94103
locationList[1] Timbuktu
locationList [2] [0] Caribou
locationList[2] [1] Aroostook County
locationList[2] [2] Maine
locationList [2] [3] USA
locationList [3] [0] Hill Valley
locationList[3] [1] ca
locationList[3] [2] 91905

GlobalProperties ($Sglobalprop)

Provides access to all Global Custom Properties.

Global Property Methods

string value(string listName, string propertyName, boolean
suppressIncrement)

Returns the value of the specified Global Custom Property.

The “listName” parameter specifies the name of the Global Custom Property
List. If the value is null, the name “Default” is used.

The “propertyName” parameter specifies the name of the individual Global
Custom Property within the list.

If the property is a counter, it may be incremented before the value is
returned, unless the “suppressincrement” parameter is true. (“Message-level”
counters are incremented only when accessed from within a Message, and
then only on the first access within that Message.)

If the “suppressincrement parameter is omitted, “false” is assumed.
string valueUsingPath (string propertyPath,
boolean suppressIncrement)
Returns the value of the specified Global Custom Property.

The “propertyPath” parameter specifies which property is to be accessed. It
can be as simple as only a property name, in which case the property will be
taken from the default Global Custom Property List (named “Default”), or it
can be a “path” that specifies a Global Custom Property List and a property.

A “path” to a property is given by using the name of the Global Custom
Property List, a slash, and then the name of the Global Custom Property in that
list.

For example, the following path:
My list/Some property

Refers to the property named “Some property” in the Global Custom
Property List named “My 1list”.

The following paths are equivalent:
Default/Property 6
Property 6

Both of the above paths refer to the property named “Property 6”inthe
default Global Custom Property List.

If the property is a counter, it may be incremented before the value is
returned, unless the “suppressincrement” parameter is true. (“Message-level”
counters are incremented only when accessed from within a Message, and
then only on the first access within that Message.)

If the “suppressincrement parameter is omitted, “false” is assumed.

string set(string listName, string propertyName, var
newValue)

Sets a new value into the specified Global Custom Property.

The “listName” parameter specifies the name of the Global Custom Property
List. If the value is null, the name “Default” is used.

The “propertyName” parameter specifies the name of the individual Global
Custom Property within the list.

The “newValue” parameter is the new value for the property. It can be null.
(The “undefined” value is treated as null.) The value will be converted to a
string.

string setUsingPath (string propertyPath, var newValue)
Sets a new value into the specified Global Custom Property.

The “propertyPath” parameter specifies which property is to be accessed. It
can be as simple as only a property name, in which case the property will be
taken from the default Global Custom Property List (named “Default”), or it
can be a “path” that specifies a Global Custom Property List and a property.

See the description of property paths for the “valueUsingPath” method.

The “newValue” parameter is the new value for the property. It can be null.
(The “undefined” value is treated as null.) The value will be converted to a
string.

Result Object

Represents the Result being produced for the currently playing Composition.

Result Properties
LEVEL_ ERROR (read only - integer)

An indicator to be passed in for the “level” parameter of the “postMessage”
method.

LEVEL STATISTICS (read only - integer)

An indicator to be passed in for the “level” parameter of the “postMessage”
method.

LEVEL INFO (read only - integer)

An indicator to be passed in for the “level” parameter of the “postMessage”
method.

LEVEL VERBOSE (read only - integer)

An indicator to be passed in for the “level” parameter of the “postMessage”
method.

summary (read/write - string)
The “summary” text that will be shown in the Result for the Composition.
name (read only - string)

The name of the Result in the Repository (the base name only, does not
include the path). Null if no Result is being written.

Result Methods

void postMessage (int level, string message, string
details)

Adds a custom message to the Result object with the given message and detail
text. The “details” parameter is optional and may be omitted. isAdopted

Composition Object

Represents the Composition itself.

Composition Properties
Name (read only - string)
The name of the Composition
Parent (read only - object)
Always null.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Composition”.
children (read only - array of objects)
An array of Band objects representing all of the Bands in the Composition.
index (read only - integer)
Always returns -1 for Compositions.
iterationNumber (read only - integer)

If the Composition is repeating, this is the iteration number of the current
repeat of the Composition. The iteration number starts at one. Compositions
can be set to repeat via the “Repeat play” option in the “Play with options”
dialog in Central, or in the “Play Options” dialog in the Composition Editor.

nextItem (read only - object)
Always returns null for Compositions.

previousItem (read only - object)

Always returns null for Compositions.
forEachValue (read only - string, number, date/time, or null)
Always returns null for Compositions.
repeatIndex (read only - integer)
Always -1 for Compositions.
playNumber (read only - integer)
Always 0 for Compositions.
playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
playNumberBeforeRenewal will be equal to the value of playNumber. If
this item does not repeat in parallel, the value will be zero.

For example, if parallel repeat number 5 of the item ends, but the Renew
parallel repeats checkbox is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new repeatIndex and
playNumber values (according to how many other repeats have already
occurred). However, the playNumberBeforeRenewal value will still be 5 in
this example.

This property is always 0 for Composition, Checkpoint, Delay, and Target.
playNumberWithinRenewal (read only - integer)
Always 0 for Compositions.i sPreviewMode (read only - boolean)

True if the Composition is being played in Preview mode.

Composition Methods
void abort (Object message, Object details)

Terminates the Composition as if there were an error. The message and detail
text given in the parameters are inserted into the Result object.

Example:

Scontext.composition.abort ("Message text from script",

"Details\nfrom\nscript") ;
void stop ()
Stops the Composition, as if the user had pressed the “stop” button.
void pause ()

Pauses the Composition, as if the user had pressed the “pause” button. Note
that this merely starts the Composition pausing. The Composition will not
actually be completely paused until all portions of the Composition have
paused, which cannot happen until the current Script ends.

object getChild(string childName)

Returns a specific Band within the Composition by name, or null if there is no
Band with the specified name.

object getItemViaPath(string pathType, string path)

Given the path to an item in the Composition object hierarchy, returns the
object in the hierarchy that represents that item.

The “pathType” parameter value specifies the “starting point” of the path. For
Compositions the only allowable value is “Composition”, to indicate that the
path is relative to the Composition.

The “path” parameter contains a path as specified for “In Situ Substitution
Specifications” (see the separate document on ISSEs).

void rampPause ()

Pauses the Composition’s “ramp up”, if any, as if the user had pressed the
“pause ramp” button. Note that this merely starts the ramp pausing. The ramp
will not actually be completely paused until all portions of the Composition on
all servers have paused the ramp.

This method may be called at any time, including when the ramp up is already
paused or pausing, or when it is resuming.

“Ramp up” is defined as Track parallel repeating with an “interval”.
void rampResume ()

Resumes the Composition’s “ramp up”, if any, as if the user had pressed the
“resume ramp” button. Note that this merely starts the ramp resuming. The
ramp will not actually be completely resumed until all portions of the
Composition on all servers have resumed the ramp.

This method may be called at any time, including when the ramp up is already
resuming or is not paused.

“Ramp up” is defined as Track parallel repeating with an “interval”.

Band Object

Represents a Band within the Composition.

Band Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (string)
The string “Band”.

children (read only - array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)

where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)

An integer value that represents the “play ordinal number” of this item.
Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
playNumberBeforeRenewal will be equal to the value of playNumber. If
this item does not repeat in parallel, the value will be zero.

For example, if parallel repeat number 5 of the item ends, but the Renew
parallel repeats checkbox is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new repeat Index and
playNumber values (according to how many other repeats have already
occurred). However, the playNumberBeforeRenewal value will still be 5 in
this example.

This property is always 0 for Composition, Checkpoint, Delay, and Target.
playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT_ CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

Band Methods

object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given the path to an item in the Composition object hierarchy, returns the
object in the hierarchy that represents that item.

The “pathType” parameter value specifies the “starting point” of the path,
relative to this Band. For Bands, it can be any of the following values (case is
not significant):

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

. "Band"
The path is relative to this Band.

The “path” parameter contains a path as specified for “In Situ Substitution
Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT_TIMING_PARALLEL
e REPEAT_TIMING_SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
atall.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be

3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

Track

Represents a Track within the Composition.

Track Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)

The string “Track”.

children (read only - array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)
where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)

An integer value that represents the “play ordinal number” of this item.
Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
playNumberBeforeRenewal will be equal to the value of playNumber. If
this item does not repeat in parallel, the value will be zero.

For example, if parallel repeat number 5 of the item ends, but the Renew
parallel repeats checkbox is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new repeatIndex and
playNumber values (according to how many other repeats have already
occurred). However, the playNumberBeforeRenewal value will still be 5 in
this example.

This property is always 0 for Composition, Checkpoint, Delay, and Target.
playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

Track Methods
object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object

in the hierarchy that represents that item.

The “pathType” parameter value specifies the “starting point” of the path,
relative to this Track. For Tracks it can be any of the following values (case is
not significant):

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

e “Band”

The path is relative to this Track’s parent Band.
e “Track”

The path is relative this Track.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT_TIMING_PARALLEL
e REPEAT_TIMING_SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
atall.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

void end (String optionalErrorText)

Requests that play of this Track be terminated. If an optional error text string
is provided, the Track will be considered to have ended in error. If the Track is
not currently playing, no action is taken.

Note that this is not an “abort” - play will be ended after any currently playing
Clip(s) complete.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

Target Object

Represents the target itself.

Target Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)

The parent object of this item.

propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Target”.
children (read only - array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)
where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

This property is always null for Targets.

repeatIndex (read only - integer)
Always -1 for Targets.
playNumber (read only - integer)
Always 0 for Targets.
playNumberBeforeRenewal (read only - integer)
Always 0 for Targets.
playNumberWithinRenewal (read only - integer)
Always 0 for Targets.
cookies (readable and settable - array of “structs” (objects with properties))

This contains the current list of cookies being maintained. This list changes as
responses are received that contain cookies.

The value is null if there are currently no cookies being maintained.

There is a single list of cookies maintained across all Targets within the same
instance of the same Clip. Thus the value for this property will be the same for
all Targets in the same instance of the same Clip, and setting this property
affects the Clip’s cookie processing across all Targets within the Clip.

This property can be set to replace the entire list of cookies. This can be done
by modifying the existing list, or by creating an entirely new list.

The value of the property is an array of Objects. Each object in the array has
the following property values:

e “name” (String) - the name of the cookie.

e “domain” (String) - the domain name of the cookie.

e ‘“path” (String) - the cookie’s path.

e “value” (String) - the value of the cookie.

e “expirationDate” (Date object) - the expiration date of the cookie
(null if none).

e “secure” (Boolean) - true if it is a secure cookie.

Here is an example Script that retrieves the current cookie values and displays
them in the Result:

var cookies = $Scontext.currentClip.targets[0].cookies;
if (cookies == null)

{

Scontext.result.postMessage ($context.result.LEVEL INFO, "No
cookies.") ;

}

else

var text = "";

for each (var cookie in cookies))
text += "name=" + cookie.name + ", ";
text += "domain=" + cookie.domain + ", ";

text += "path=" + cookie.path + ", ";

text += "value=" + cookie.value + ", ";
text += "expirationDate=" + cookie.expirationDate + ", ";
text += "secure=" + cookie.secure + "\n";

Scontext.result.postMessage ($context.result.LEVEL INFO,
cookies.length + " cookies.", text);

}

Here is an example Script that replaces the entire current cookie list with a
new list that contains two cookies named “MyCookiel” and “MyCookie2”:

var newList = new Array();

var cookie = new Object () ;

cookie.name = "MyCookiel";
cookie.domain = "myhostname";
cookie.path = "/some/path";
cookie.value = "Value of MyCookiel";

cookie.expirationDate = new Date("05 Aug 2030 00:00:00 GMT") ;
cookie.secure = false;

newList [0] = cookie;

cookie = new Object () ;

cookie.name = "MyCookie2";
cookie.domain = "myhostname";
cookie.path = "/some/path";
cookie.value = "Value of MyCookie2";

cookie.expirationDate = new Date("05 Aug 2030 00:00:00 GMT") ;
cookie.secure = false;
newList [1] = cookie;

Scontext.currentClip.targets[0] .cookies = newList;

Here is an example Script that finds the current cookie named “ChocolateChip”
and changes it’s value to “42":

var list = Scontext.currentClip.targets[0].cookies;

if (list != null)
{

for each (var cookie in list)

{

if (cookie.name == "ChocolateChip")
{
cookie.value = "42";

Scontext.result.postMessage ($context.result.LEVEL INFO,
"Cookie value replaced.");

break;

Scontext.currentClip.targets[0] .cookies = list;

Here is an example Script that adds new cookie named “ChocolateChip” to the
current cookie list:

var list = Scontext.currentClip.targets[0].cookies;

if (list == null)

list = new Array();

var cookie = new Object () ;

cookie.name = "ChocolateChip";

cookie.domain = "myhostname";

cookie.path = "/my/path";

cookie.value = "Cookie value'";

cookie.expirationDate = new Date("05 Aug 2030 00:00:00 GMT") ;

cookie.secure = false;

list[list.length] = cookie;

Scontext.currentClip.targets[0] .cookies = list;

Target Methods
object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter indicates the starting point of the path within this
item’s container hierarchy. For Targets, it may have the following values:

“Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

“Band”

The path is relative to the Band that contains this item.
“Track”

The path is relative to the Track that contains this item.
“MessageClip”or “Clip” (either one is accepted)

The path is relative to the Clip that contains this item. If nested within
multiple Clips, the path is relative to the lowest-level containing Clip (the
Clip “nearest to” the item in terms of the parentage hierarchy).

“Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain
(the Chain “nearest to” the item in terms of the parentage hierarchy).

“Group"

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

“Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level
containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

HI f"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

“Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

e “Target”
The path is relative to this Target.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

string signURL(string url)
“Signs” a URL according to the OAuth (“Open Authorization”) protocol.

The “url” parameter is a complete HTTP URL. The return value is a modified
version of the URL, “signed” according to OAuth.

The information needed to perform the signing operation is taken from the
following System Property values of the Target:

e “oauth_consumer_key”

e “oauth_consumer_secret”
e “oauth_token”

e “oauth_token_secret”

e “oauth_signature_method”

boolean isAdopted()

Returns true if this Target was originally in a child nested Clip but was adopted by
the current Clip due to Target Merging.

Most operations on this Target will also affect the original Target in the child
nested Clip. For example, changing a System Property for this Target will also
change the same System Property of the original Target in the child Clip. One
notable exception is Custom Properties - this Target will still maintain it's own set
of Custom Properties, separate from the original Target in the child Clip.

boolean isIndirect ()
Returns true if this Target was merged into a parent Clip due to Target Merging.

Most operations on this Target will be deferred to the adoptive Target in the
parent Clip. For example, changing a System Property for this Target will also
change the same System Property of the adoptive Target in the parent Clip. One
notable exception is Custom Properties - this Target will still maintain it's own set
of Custom Properties, separate from the adoptive Target in the parent Clip.

boolean hasBeenMergedInto ()

Returns true if one or more Targets in one or more child nested Clips have been
merged into this Target due to Target merging.

Most operations on this Target will also affect the original Targets in the child
nested Clips. For example, changing a System Property for this Target will also
change the same System Property of the original Targets in the child Clips. One
notable exception is Custom Properties - this Target will still maintain it's own set
of Custom Properties, separate from the original Targets in the child Clips.

object getDirectTarget ()

If this Target was merged into a parent Clip due to Target Merging, this returns
the Target object for the Target that it was merged into. If it was merged into
several levels of nested Clips above, the highest-level Target is returned.

If this Target was not merged into a parent Clip, this Target object itself is
returned.

void stop ()

Stops play of the current instance of the Track. Does not affect any other
instances of the Track. Does not cause the Track to stop repeating if it repeats.

The stop will occur immediately once the calling Script ends.

Wherever this call is made within the Track hierarchy, all items in the current
instance of the Track will be stopped. For example, the Clip containing the
current Script will be stopped, no further items in the Clip will play and no
new Clips will be started in the current Track instance.

void stopServer ()

Stops play of all instances of the Track. If the Track repeats, no further repeats
will occur.

The stop will occur for the current instance of the Track once the calling Script
ends. The stop will occur immediately during the call for all other instances of
the Track.

All instances of the Track will be stopped and no further items will play. For
example, containing Clips will be stopped, no further items in the Clip will play
and no new Clips will be started.

If the Track has been copied to multiple servers (for example by entering a
value into the “Copy Count” field when “Dedicated Load Server” is selected in
the “General” tab in the Composition Editor), this call will only affect instances
of the Track on the individual server on which the current Composition is
playing. It will not affect copies of the Track that are playing on other servers.

Void drainServer ()

Prohibits any further instances of the Track from being created on the current
server. If the Track repeats, no new repeats will be started. If the Track uses
“Parallel repeat renewal”, no new renewals will occur.

Any existing instances of the Track that have already started will be allowed to
finish normally.

The prohibition on new instances of the Track takes effect as soon as the call is
made. Once the prohibition is in effect, it cannot be cancelled.

If the Track has been copied to multiple servers (for example by entering a
value into the “Copy Count” field when “Dedicated Load Server” is selected in
the “General” tab in the Composition Editor), this call will only affect instances
of the Track on the individual server on which the current Composition is
playing. It will not affect copies of the Track that are playing on other servers.

Clip Object

Represents a Test Clip within the Composition.

Clip Properties
All of the following Clip properties are read-only.
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent Track.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this Clip.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)

The string “Clip”.

children (read only - array of objects)

An array of objects representing the children of this Clip, if any. Null if the Clip
has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)
where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)

An integer value that represents the “play ordinal number” of this item.
Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
playNumberBeforeRenewal will be equal to the value of playNumber. If
this item does not repeat in parallel, the value will be zero.

For example, if parallel repeat number 5 of the item ends, but the Renew
parallel repeats checkbox is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new repeat Index and
playNumber values (according to how many other repeats have already
occurred). However, the playNumberBeforeRenewal value will still be 5 in
this example.

This property is always 0 for Composition, Checkpoint, Delay, and Target.
playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

targets (array of objects)

An array of Target objects representing all of the Targets referenced by this
Clip. Null if there are no Targets.

REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

dynamicResourceCache (readable and settable - array of Strings)

If Dynamic-resource Caching is enabled for the Clip, this property contains the
list of URLs currently in the cache. This list changes as Pages are played and
dynamic resources are extracted from responses to the Main Message.

The value is null if the Dynamic-Resource Cache is not enabled, or if the cache
is empty.

This property can be set to replace the entire cache. This can be done to
modify the existing list of URLs, or to create an entirely new list of URLs.

The value of the property is an array of Strings. Each String is the fully-
qualified URL of a Page dynamic resource. The list that is returned is sorted.
Any new list that is provided need not be sorted. Null entries in any new list
provided are ignored.

Here is an example Script that retrieves the current cache and displays it in the
Result:

var urls = Scontext.currentClip.dynamicResourceCache;
if (urls == null)

{

Scontext.result.postMessage (Scontext.result.LEVEL INFO, "Cache
is empty.");

}

else

var text = "";

for each (var url in urls))

{

text += url + "\n";

Scontext.result.postMessage ($context.result.LEVEL INFO,
urls.length + " URLs", text);

}

Here is an example Script that replaces the entire current cache with a new list
that contains two URLs:

var newlList = new Array () ;

newList [0] "http://somewhere.com/somepage.html";

newList [1]

"http://someplace.com/index.html";

Scontext.currentClip.dynamicResourceCache = newlList;

Here is an example Script that removes a specific URL from the cache, if it is
there:

var list = $Scontext.currentClip.dynamicResourceCache;

if (list != null)

{

for (var 1 = 0; 1 < list.length; i++)

{

if (list[i] == "http://somewhere.com/somepage.html")

{
list[i] = null;
Scontext.currentClip.dynamicResourceCache = list;

Scontext.result.postMessage ($context.result.LEVEL INFO,
"URL removed.") ;

break;

}
Here is an example Script that adds a new URL to the current cache:

var list = $context.currentClip.dynamicResourceCache;

if (list == null)

list = new Array();

list[list.length] = "http://somewhere.com/somepage.html";

Scontext.currentClip.dynamicResourceCache = list;

Clip Methods
object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getTarget (string targetName)

Returns a specific Target object by name, or null if there is no Target with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter value specifies the “starting point” of the path,
relative to this Clip. For Clips it can be any of the following values (case is not
significant):

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

e “Band”
The path is relative to this Clips parent Band.

e “Track”
The path is relative this Clip’s parent Track.

e “MessageClip”or “Clip” (either one is accepted)
The path is relative to this Clip.

“Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain (the
Chain “nearest to” the item in terms of the parentage hierarchy).

° “G-roup"

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

e “Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level
containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

° MI f"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

e “Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item. See the description of this
method in the description of the Band object.

void end(String optionalErrorText)

Requests that play of this Clip be terminated. If an optional error text string is
provided, the Track will be considered to have ended in error. If the Clip is not
currently playing, no action is taken.

Note that this is not an “abort” - play will be ended after any currently playing
item(s) in the Clip complete.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

Chain Object

Represents a Chain within the Composition.

Chain Properties

name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Chain”.
children (read only - array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item'’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)

where “item” is the current item.

forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)

An integer value that represents the “play ordinal number” of this item.
Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
playNumberBeforeRenewal will be equal to the value of playNumber. If
this item does not repeat in parallel, the value will be zero.

For example, if parallel repeat number 5 of the item ends, but the Renew
parallel repeats checkbox is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new repeatIndex and
playNumber values (according to how many other repeats have already
occurred). However, the playNumberBeforeRenewal value will still be 5 in
this example.

This property is always 0 for Composition, Checkpoint, Delay, and Target.
playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

Chain Methods
object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter value specifies the “starting point” of the path,
relative to this Chain. For Chains it can be any of the following values (case is
not significant):

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

e “Band”
The path is relative to this Chain’s parent Band.
e “Track”
The path is relative this Chain’s parent Track.
e “MessageClip”or“Clip” (either one is accepted)
The path is relative to this Chain’s parent Clip.
e “Chain”
The path is relative to this Chain.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT_TIMING_PARALLEL
e REPEAT_TIMING_SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
atall.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

void end(String optionalErrorText)

Requests that play of this Chain be terminated. If an optional error text string
is provided, the Chain will be considered to have ended in error. If the Chain is
not currently playing, no action is taken.

Note that this is not an “abort” - play will be ended after any currently playing
item in the Chain completes.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

Group Object

Represents a Group within the Composition.

Group Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Group”.
children (read only - array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)
where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)

An integer value that represents the “play ordinal number” of this item.
Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option enabled,
this is an integer value that is the “playNumber” value of the original parallel
repeat for this item if it has been renewed because a prior parallel repeat ended.
If this is the original parallel repeat, the value of
“playNumberNumberBeforeRenew” will be equal to the value of “playNumber”. If
this item does not repeat in parallel, the value will be zero.

See also “playNumber”, above.

For example, if parallel repeat number 5 of the item ends, but the “Renew parallel
repeats” option is enabled, the ending repeat will be replaced with a new,
replacement repeat. The new repeat will have new “repeatlndex” and
“playNumber” values (according to how many other repeats have already
occurred). However, the “playNumberBeforeRenewal” value will still be 5 in this
example. REPEAT TIMING PARALLEL (read only - integer)

playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

REPEAT_TIMING_PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

Group Methods
object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter value specifies the “starting point” of the path,
relative to this Group. For Groups it can be any of the following values (case is
not significant):

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

e “Band”
The path is relative to this Group’s parent Band.
e “Track”
The path is relative this Group’s parent Track.
e “MessageClip”or “Clip” (either one is accepted)

The path is relative to this Group’s parent Clip. If nested within multiple
Clips, the path is relative to the lowest-level containing Clip (the Clip
“nearest to” the item in terms of the parentage hierarchy).

° “Group"
The path is relative to this Group.
e “Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level

containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

° “If"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

e “Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT_TIMING_PARALLEL
e REPEAT_TIMING_SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
atall.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

void end(String optionalErrorText)

Requests that play of this Group be terminated. If an optional error text string
is provided, the Group will be considered to have ended in error. If the Group
is not currently playing, no action is taken.

Note that this is not an “abort” - play will be ended after any currently playing
item in the Group completes.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

Transaction Object

Represents a Transaction within the Composition.

Transaction Properties

name (string)

The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Transaction”.
children (read only - array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)

where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)
where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)

An integer value that represents the “play ordinal number” of this item.
Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original

parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
“playNumberNumberBeforeRenew” will be equal to the value of
“playNumber”. If this item does not repeat in parallel, the value will be zero.

See also “playNumber”, above.

For example, if parallel repeat number 5 of the item ends, but the “Renew
parallel repeats” option is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new “repeatindex” and
“playNumber” values (according to how many other repeats have already
occurred). However, the “playNumberBeforeRenewal” value will still be 5 in
this example.

playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

Transaction Methods

object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter indicates the starting point of the path within this
item’s container hierarchy. For Transactions, it may have the following values:

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

e “Band”

The path is relative to the Band that contains this item.
e “Track”

The path is relative to the Track that contains this item.
e “MessageClip”or“Clip” (either one is accepted)

The path is relative to the Clip that contains this item. If nested within
multiple Clips, the path is relative to the lowest-level containing Clip (the
Clip “nearest to” the item in terms of the parentage hierarchy).

e “Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain
(the Chain “nearest to” the item in terms of the parentage hierarchy).

° "Group"

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

e “Transaction”
The path is relative to this Transaction.

° “If"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

e “Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

e The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT_TIMING_PARALLEL
e REPEAT_TIMING_SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
at all.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

void end(String optionalErrorText)

Requests that play of this Transaction be terminated. If an optional error text
string is provided, the Transaction will be considered to have ended in error.
If the Transaction is not currently playing, no action is taken.

Note that this is not an “abort” - play will be ended after any currently playing
item in the Transaction completes.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

If Object

Represents an If within the Composition.

If Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “If”.
children (read only - array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)

where “item” is the current item.

previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)
where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)

An integer value that represents the “play ordinal number” of this item.
Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
“playNumberNumberBeforeRenew” will be equal to the value of
“playNumber”. If this item does not repeat in parallel, the value will be zero.

See also “playNumber”, above.

For example, if parallel repeat number 5 of the item ends, but the “Renew
parallel repeats” option is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new “repeatindex” and
“playNumber” values (according to how many other repeats have already
occurred). However, the “playNumberBeforeRenewal” value will still be 5 in
this example.

playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

If Methods
object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter indicates the starting point of the path within this
item’s container hierarchy. For Ifs, it may have the following values:

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

e “Band”

The path is relative to the Band that contains this item.
e “Track”

The path is relative to the Track that contains this item.
e “MessageClip”or “Clip” (either one is accepted)

The path is relative to the Clip that contains this item. If nested within
multiple Clips, the path is relative to the lowest-level containing Clip (the
Clip “nearest to” the item in terms of the parentage hierarchy).

e “Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain
(the Chain “nearest to” the item in terms of the parentage hierarchy).

° “Group"

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

e “Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level
containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

° MI f"

The path is relative to this If.

e “Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT_TIMING_PARALLEL
e REPEAT_TIMING_SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
at all.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

void end(String optionalErrorText)

Requests that play of this If be terminated. If an optional error text string is
provided, the If will be considered to have ended in error. If the If is not
currently playing, no action is taken.

Note that this is not an “abort” - play will be ended after any currently playing
item in the If completes.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

Switch Object

Represents a Switch within the Composition.

Switch Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Switch”.
children (read only - array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)

where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)

An integer value that represents the “play ordinal number” of this item.
Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
“playNumberNumberBeforeRenew” will be equal to the value of
“playNumber”. If this item does not repeat in parallel, the value will be zero.

See also “playNumber”, above.

For example, if parallel repeat number 5 of the item ends, but the “Renew
parallel repeats” option is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new “repeatIndex” and

“playNumber” values (according to how many other repeats have already
occurred). However, the “playNumberBeforeRenewal” value will still be 5 in
this example.

playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat
in parallel, this value will always be zero.

REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

Switch Methods

object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter indicates the starting point of the path within this
item’s container hierarchy. For Switches, it may have the following values:

“Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

“Band”

The path is relative to the Band that contains this item.
“Track”

The path is relative to the Track that contains this item.
“MessageClip” or “Clip” (either one is accepted)

The path is relative to the Clip that contains this item. If nested within
multiple Clips, the path is relative to the lowest-level containing Clip (the
Clip “nearest to” the item in terms of the parentage hierarchy).

“Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain
(the Chain “nearest to” the item in terms of the parentage hierarchy).

“Group”

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

“Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level
containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

“I f"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

“Switch”

The path is relative to this Switch.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT_TIMING_PARALLEL
e REPEAT_TIMING_SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
atall.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

void end (String optionalErrorText)

Requests that play of this Switch be terminated. If an optional error text string
is provided, the Switch will be considered to have ended in error. If the Switch
is not currently playing, no action is taken.

Note that this is not an “abort” - play will be ended after any currently playing
item in the Switch completes.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

Page Object

Represents a Page within the Composition.

Page Properties

name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Page”.
children (read only - array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)

where “item” is the current item.

forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)

An integer value that represents the “play ordinal number” of this item.
Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
playNumberBeforeRenewal will be equal to the value of playNumber. If
this item does not repeat in parallel, the value will be zero.

For example, if parallel repeat number 5 of the item ends, but the Renew
parallel repeats checkbox is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new repeatIndex and
playNumber values (according to how many other repeats have already
occurred). However, the playNumberBeforeRenewal value will still be 5 in
this example.

This property is always 0 for Composition, Checkpoint, Delay, and Target.
playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

dynamicResourceLinks (array of strings)

If this Page has dynamic resources enabled, this property contains the list of
resource links for the dynamic resources that will be retrieved. The value is an
array of strings, with each string being the full URL to the resource.

This array can be modified by Script to change the dynamic resources that will
be retrieved. URLs in the array can be modified or removed, and new URLs
can be added to the array. Null and undefined entries in the array will be
ignored (therefore an entry in the array can be “removed” by setting it to null).

The value of this property is available only after the Page’s “main Message”
(“HTML Document”) has played. Any changes made to this property must be
made after that point (any changes made to this property before the main
Message plays will be overwritten). In other words, this property should

generally only be used by Scripts that appear after the main Message in the
Page.

If dynamic resource retrieval has been disabled for the Page, this property is
ignored and will have no value, and any value set into it will be ignored.

Here’s an example of a Script that uses the “dynamicResourceLinks” property
to process the list of links that were extracted from the response to the Page’s
main Message, and do the following: (1) remove any resource links that
contain the string “.css” anywhere in them, and (2) change the first occurrence
of “https” to “http” in all links, and (3) add an additional hard-coded link to
“http://somewhere.com/addedlink” to the list.
var links = Scontext.currentPage.dynamicResourcelLinks;
if (links != null)
{
for (var i = 0; i < links.length; i++)
{
if (links[i] .indexof (".css") >= 0)
links[i] = null;

else

links[i] .replace (/https/, "http");

links[links.length] = "http://somewhere.com/addedlink";

else

links = new Array();

links[0] = "http://somewhere.com/addedlink";

Scontext.currentPage.dynamicResourcelinks = links;

dynamicResourceHeaders (string)

If this Page has dynamic resources enabled, this property contains the list of
HTTP Headers that will be added for the dynamic resources that will be
retrieved. The value is a string formatted as HTTP Headers are sent in an
HTTP request (one line per header, with each line containing the header name,
a colon and then the header value).

This string can be modified by Script to change the headers that will be sent.
By default, the “User-Agent” header is copied from the Main Message’s request.

The value of this property is available only after the Page’s “main Message”
(“HTML Document”) has played. Any changes made to this property must be
made after that point (any changes made to this property before the main
Message plays will be overwritten). In other words, this property should
generally only be used by Scripts that appear after the main Message in the
Page.

If dynamic resource retrieval has been disabled for the Page, this property is
ignored and will have no value, and any value set into it will be ignored.

Here’s an example of a Script that adds the header “MyHeader”, with value
“123" to every dynamic resource Message in the Page.

var headers = $context.currentPage.dynamicResourceHeaders;
if (headers == null)

headers = "MyHeader: 123";
else

headers += "\nMyHeader: 123";

Scontext.currentPage.dynamicResourceHeaders = headers;

Page Methods
object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter indicates the starting point of the path within this
item’s container hierarchy. For Pages, it may have the following values:

“Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

“Band”

The path is relative to the Band that contains this item.
“Track”

The path is relative to the Track that contains this item.
“MessageClip” or “Clip” (either one is accepted)

The path is relative to the Clip that contains this item. If nested within
multiple Clips, the path is relative to the lowest-level containing Clip (the
Clip “nearest to” the item in terms of the parentage hierarchy).

“Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain
(the Chain “nearest to” the item in terms of the parentage hierarchy).

“Group”

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

“Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level
containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

“I f"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

e “Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

° “Page"
The path is relative to this Page.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT_TIMING_PARALLEL
e REPEAT_TIMING_SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
at all.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

void end(String optionalErrorText)

Requests that play of this Page be terminated. If an optional error text string is
provided, the Page will be considered to have ended in error. If the Page is not
currently playing, no action is taken.

Note that this is not an “abort” - play will be ended after any currently playing
item in the Page completes.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

Checkpoint Object

Represents a Checkpoint within the Composition.

Checkpoint Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Checkpoint”.
children (array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)

where “item” is the current item.

previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)
where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

Always -1 for a Checkpoint.
playNumber (read only - integer)

Always 0 for a Checkpoint.
playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
playNumberBeforeRenewal will be equal to the value of playNumber. If
this item does not repeat in parallel, the value will be zero.

For example, if parallel repeat number 5 of the item ends, but the Renew
parallel repeats checkbox is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new repeat Index and
playNumber values (according to how many other repeats have already
occurred). However, the playNumberBeforeRenewal value will still be 5 in
this example.

This property is always 0 for Composition, Checkpoint, Delay, and Target.
REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT_ CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

Checkpoint Methods
object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter indicates the starting point of the path within this
item’s container hierarchy. For Checkpoints, it may have the following values:

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

e “Band”

The path is relative to the Band that contains this item.
e “Track”

The path is relative to the Track that contains this item.
e “MessageClip”or “Clip” (either one is accepted)

The path is relative to the Clip that contains this item. If nested within
multiple Clips, the path is relative to the lowest-level containing Clip (the
Clip “nearest to” the item in terms of the parentage hierarchy).

e “Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain
(the Chain “nearest to” the item in terms of the parentage hierarchy).

° “Group"

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

e “Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level
containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

° “If"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

e “Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

“Checkpoint”
The path is relative to this Checkpoint.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT_TIMING_PARALLEL
e REPEAT_TIMING_SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
at all.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

Message Object

Represents a Message within the Composition.

Message Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent Clip.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this Message.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Message”.
children (read only - array of objects)

Always null

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)
where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)
An integer value that represents the “play ordinal number” of this item.

Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
playNumberBeforeRenewal will be equal to the value of playNumber. If
this item does not repeat in parallel, the value will be zero.

For example, if parallel repeat number 5 of the item ends, but the Renew
parallel repeats checkbox is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new repeatIndex and
playNumber values (according to how many other repeats have already
occurred). However, the playNumberBeforeRenewal value will still be 5 in
this example.

This property is always 0 for Composition, Checkpoint, Delay, and Target.
playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

target (read only - Target object)
The Target object for this Message. Can be null.
REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT_ CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

RESPONSE TEXT (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE_ HTTP_ BODY (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE_ HTTP_ HEADER (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE HTTP HEADER LIST (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE_HTTP_PROTOCOL (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE_ HTTP_ STATUSCODE (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE HTTP STATUSTEXT (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE TEXT AS XML (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE TEXT AS HTML (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE TEXT AS JSON (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE HTTP BODY AS XML (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE HTTP_ BODY AS HTML (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

RESPONSE HTTP_ BODY AS JSON (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getResponse” method. (See the description of the “getResponse” method.)

MESSAGE_TEXT (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getMessage” and “setMessage” methods. (See the descriptions of those
method.)

MESSAGE HTTP_ BODY (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getMessage” and “setMessage” methods. (See the descriptions of those
method.)

MESSAGE_HTTP_ HEADERS (read only - integer)

A constant that can be passed as the “indicator” parameter in calls to the
“getMessage” and “setMessage” methods. (See the descriptions of those
method.)

responseTime (read only - long)

The total amount of time, in milliseconds, that it took to send the message and
receive the response. Will be null if the message has not yet been sent or if in
“preview” mode.

bytesSentCount (read only - long)

The number of bytes that were sent. Will be null if the message has not yet
been sent or if in “preview” mode. Note: This is currently the number of
Unicode characters, which may not be the same as the number of actual bytes.

bytesReceivedCount (read only - long)

The number of bytes that were received. Will be null if the message has not yet
been sent or if in “preview” mode. Note: This is currently the number of
Unicode characters, which may not be the same as the number of actual bytes.

retryCount (read only - long)

The number of retries that were required due to unavailable local ports when
sending the message. Will be null if the message has not yet been sent or if in
“preview” mode.

retryTotalTime (read only - long)

The total amount of time, in milliseconds, that was spent retrying due to
unavailable local ports when sending the message. Will be null if the message
has not yet been sent or if in “preview” mode.

timeToFirstByte (read only - long)

The “time to first byte” measurement for this message. Will be null if the
message has not yet been sent or if in “preview” mode.

timeToLastByte (read only - long)

The “time to last byte” measurement for this message. Will be null if the
message has not yet been sent or if in “preview” mode.

Message Methods
object getChild(string childName)

Always returns null.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter indicates the starting point of the path within this
item’s container hierarchy. For Messages, it may have the following values:

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

e “Band”

The path is relative to the Band that contains this item.
e “Track”

The path is relative to the Track that contains this item.
e “MessageClip”or “Clip” (either one is accepted)

The path is relative to the Clip that contains this item. If nested within
multiple Clips, the path is relative to the lowest-level containing Clip (the
Clip “nearest to” the item in terms of the parentage hierarchy).

e “Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain
(the Chain “nearest to” the item in terms of the parentage hierarchy).

° “Group"

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

“Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level
containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

° MI f"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

e “Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

e ‘“Page”

The path is relative to the Page that contains this item.
e “Message”

The path is relative to this Message
e “Destination”

The path is relative to this Message’s Target.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item. See the description of this
method in the description of the Band object.

String or String[] getResponse (int indicator, string
param)

Returns all or the specified portion of the response, if a response has been
received. Can return null. Depending upon the situation, either null, String or
array of String is returned.

The meaning of the “param” parameter depends upon the value of the
“indicator” parameter.

The “indicator” parameter must be one of the following:

¢ RESPONSE TEXT

Returns the entire text of the response received as a string.
The “param” parameter is not used.

e RESPONSE HTTP BODY

Returns the body of the HTTP response received as a string.
The “param” parameter is not used.
This indicator value is valid only for responses that are HTTP-based.

e RESPONSE HTTP STATUSTEXT

Returns the status text from the HTTP response received as a string.
The “param” parameter is not used.
This indicator value is valid only for responses that are HTTP-based.

e RESPONSE HTTP HEADER

Returns one HTTP header from the response received as a string.

The “param” parameter is the name of the HTTP header to be returned.
If the response contains no HTTP header with the specified name, null
is returned.

This indicator value is valid only for responses that are HTTP-based.

e RESPONSE HTTP HEADER LIST

Returns a list of all HTTP headers in the response.
The “param” parameter is not used.

The return value is an array of Objects. Each object has two String
property values: “name” (the name of the HTTP header) and “value”
(the value of the HTTP header).

If an HTTP header appears more than once in the response, it will
appear that many times in the array.

The items in the array are not in any particular order.

Here’s an example of a Script that gets all HTTP headers from the
response to the Message before the Script and outputs the list to the
Result:

var msg = Scontext.currentItem.previousItem;

var headerList =
msg.getResponse (msg.RESPONSE_HTTP HEADER LIST) ;

if (headerList == null)

{

Scontext.result.postMessage ($context.result.LEVEL INFO,
"No headers.");

}

else

var listAsText = "";
for each (var header in headerList)

{

listAsText += "Name: " + header.name + ", Value: " +
header.value + "\n";

}

Scontext.result.postMessage ($context.result.LEVEL INFO,

headerList.length + " HTTP
headers",

listAsText) ;

e RESPONSE HTTP PROTOCOL

Returns the protocol value from the HTTP response received as a
string.

The “param” parameter is not used.
This indicator value is valid only for responses that are HTTP-based.

RESPONSE HTTP_ STATUSCODE

Returns the status code from the HTTP response received as a string.
The “param” parameter is not used.
This indicator value is valid only for responses that are HTTP-based.

RESPONSE_TEXT AS XML

Parses the entire response text as XML, evaluates an XPath expression
for that XML, and returns the result of that XPath expression.

The “param” parameter contains the XPath expression.

This indicator value is valid only for responses that are not HTTP-
based.

If no nodes in the XML match, null is returned. If there are one or more
matching nodes, a string array is returned. (An array is returned even
if there is only one match.)

RESPONSE_TEXT AS_ HTML

Parses the entire response text as HTML, evaluates an XPath expression
for that HTML, and returns the result of that XPath expression.

The “param” parameter contains the XPath expression.

This indicator value is valid only for responses that are not HTTP-
based.

If no nodes in the HTML match, null is returned. If there are one or
more matching nodes, a string array is returned. (An array is returned
even if there is only one match.)

RESPONSE TEXT AS JSON

Parses the entire response text as JSON, evaluates an XPath expression
for that XML, and returns the result of that XPath expression.

The “param” parameter contains the XPath expression.

This indicator value is valid only for responses that are not HTTP-
based.

If no item in the JSON match, null is returned. If there are one or more
matching nodes, a string array is returned. (An array is returned even
if there is only one match.)

e RESPONSE HTTP_BODY AS XML

Parses the body of the HTTP response received as XML, evaluates an
XPath expression for that XML, and returns the result of that XPath
expression.

The “param” parameter contains the XPath expression.
This indicator value is valid only for responses that are HTTP-based.

If no nodes in the XML match, null is returned. If there are one or more
matching nodes, a string array is returned. (An array is returned even
if there is only one match.)

e RESPONSE HTTP BODY AS HTML

Parses the body of the HTTP response received as HTML, evaluates an
XPath expression for that HTML, and returns the result of that XPath
expression.

The “param” parameter contains the XPath expression.
This indicator value is valid only for responses that are HTTP-based.

If no nodes in the HTML match, null is returned. If there are one or
more matching nodes, a string array is returned. (An array is returned
even if there is only one match.)

e RESPONSE HTTP_BODY AS JSON

Parses the body of the HTTP response received as JSON, evaluates an
XPath expression for that JSON, and returns the result of that XPath
expression.

The “param” parameter contains the XPath expression.
This indicator value is valid only for responses that are HTTP-based.

If no items in the JSON match, null is returned. If there are one or more
matching nodes, a string array is returned. (An array is returned even
if there is only one match.)

If the “indicator” parameter is omitted, null or undefined, “RESPONSE_TEXT”
will be assumed.

String getMessage (int indicator)
Returns all or the specified portion of the message that is to be sent.
The “indicator” parameter must be one of the following:

e MESSAGE TEXT

Returns the entire text of the message that is to be sent.
This indicator value is valid only for messages that are not HTTP-based.

e MESSAGE HTTP BODY
Returns the body of the HTTP message that is to be sent.

This indicator value is valid only for messages that are HTTP-based.

e MESSAGE HTTP HEADERS

The current value of the (optional) HTTP headers to be sent with the
message is returned. Can be null. A text string is returned with new-
lines between the HTTP headers.

This indicator value is valid only for messages that are HTTP-based.

If the “indicator” parameter is omitted, null or undefined,
“MESSAGE_HTTP_BODY” will be assumed for HTTP-based messages, or
“MESSAGE_TEXT” will be assumed for non-HTTP-based messages.

String setMessage (string value, int indicator)
Sets all or the specified portion of the message that is to be sent.
The “value” parameter is the value to be placed into the message.
The “indicator” parameter must be one of the following:

e MESSAGE TEXT

Sets the entire text of the message that is to be sent from the “value”
parameter.

This indicator value is valid only for messages that are not HTTP-based.

e MESSAGE HTTP BODY

Sets the body of the HTTP message that is to be sent from the “value”
parameter.

This indicator value is valid only for messages that are HTTP-based.

e MESSAGE HTTP HEADERS

The “value” parameter contains the (optional) HTTP headers to be sent
with the message. Can be null. The value should be a text string with
new-lines between the HTTP headers.

This indicator value is valid only for messages that are HTTP-based.

If the “indicator” parameter is omitted, null or undefined,
“MESSAGE_HTTP_BODY” will be assumed for HTTP-based messages, or
“MESSAGE_TEXT” will be assumed for non-HTTP-based messages.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

String[] getResourcelLinksFromHTMLResponse ()

If the response to this Message is HTML, the HTML is parsed and any links on
the HTML page to external resources are extracted and returned as an array of
URLs.

If there is no response, or the response is not HTML, null is returned.

BrowserAction Object

Represents a Browser Action within the Composition.

Browser Action Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent Clip.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this Browser Action.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Browser Action”.
children (read only - array of objects)

Always null.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)
where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)
An integer value that represents the “play ordinal number” of this item.

Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
playNumberBeforeRenewal will be equal to the value of playNumber. If
this item does not repeat in parallel, the value will be zero.

For example, if parallel repeat number 5 of the item ends, but the Renew
parallel repeats checkbox is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new repeatIndex and
playNumber values (according to how many other repeats have already
occurred). However, the playNumberBeforeRenewal value will still be 5 in
this example.

This property is always 0 for Composition, Checkpoint, Delay, and Target.
playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

target (read only - Target object)
The Target object for this Browser Action. Can be null.
REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT_ CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REQUEST OPERATION PARAMS (read only - integer)

A constant that can be passed in calls to the “getRequest” and “setRequest”
methods. (See the descriptions of the “getRequest” and “setRequest”
methods.)

RESPONSE OUTPUTS (read only - integer)

A constant that can be passed in calls to the “getResponse” method. (See the
description of the “getResponse” method.)

BrowserAction Methods
object getChild(string childName)
Always returns null.
object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter indicates the starting point of the path within this
item’s container hierarchy. For BrowserActions, it may have the following
values:

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

° “Band"

The path is relative to the Band that contains this item.

“Track”
The path is relative to the Track that contains this item.
“MessageClip” or “Clip” (either one is accepted)

The path is relative to the Clip that contains this item. If nested within
multiple Clips, the path is relative to the lowest-level containing Clip (the
Clip “nearest to” the item in terms of the parentage hierarchy).

“Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain
(the Chain “nearest to” the item in terms of the parentage hierarchy).

“Group”

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

“Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level
containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

MI f"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

“Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

“Page"
The path is relative to the Page that contains this item.
“Browser Action”

The path is relative to this Browser Action.

e “Destination”
The path is relative to this Browser Action’s Target.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item. See the description of this
method in the description of the Band object.

void getRequest (int indicator)

Returns the specified portion of the Browser Action request that will be
performed when the Browser Action is executed.

The “indicator” parameter must be the following value (only one possible
value is currently supported):

e REQUEST OPERATION PARAMS

Returns the “parameter” values for the Browser Action. An array of up
to three String values is returned. The array will always have a size of
three elements. If the Browser Action has less than three parameters,

the extra elements of the returned array will contain nulls.

void setRequest (Object wvalue, int indicator)

Sets the specified portion of the Browser Action request that will be
performed when the Browser Action is executed.

The “value” parameter contains the value(s) to be placed into the request.

The “indicator” parameter must be the following value (only one possible
value is currently supported):

e REQUEST OPERATION PARAMS

Sets the “parameter” values for the Browser Action. The “value”
parameter must be an array of up to three String values, representing
up to three “parameter” values to be placed into the request. Any and

all existing parameteres in the request will be removed and replaced
with these new values.

void getResponse (int indicator)

Returns the specified portion of the results of the Browser Action that was
performed.

The “indicator” parameter must be the following value (only one possible
value is currently supported):

e RESPONSE OUTPUTS

Returns a JavaScript associative array containing the “output” values
from the Browser Action. The “keys” of the array are the names of the
output values, and the values associated with the “keys” are the output
values themselves.

If the Browser Action did not return any “output” values, null is
returned.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

Delay Object

Represents a Delay object within the Composition.

Delay Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Delay”.
children (array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)
where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)
Always -1 for a Delay.
playNumber (read only - integer)
Always 0 for a Delay.
playNumberBeforeRenewal (read only - integer)
Always 0 for a Delay.
playNumberWithinRenewal (read only - integer)

Always 0 for a Delay.

REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

Delay Methods
object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter indicates the starting point of the path within this
item’s container hierarchy. For Delays, it may have the following values:

e “Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

° “Band"
The path is relative to the Band that contains this item.
e “Track”

The path is relative to the Track that contains this item.

e “MessageClip”or “Clip” (either one is accepted)

The path is relative to the Clip that contains this item. If nested within
multiple Clips, the path is relative to the lowest-level containing Clip (the
Clip “nearest to” the item in terms of the parentage hierarchy).

e “Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain
(the Chain “nearest to” the item in terms of the parentage hierarchy).

° “Group"

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

e “Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level
containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

° MI f"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

e “Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

“De lay"
The path is relative to this Delay.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT TIMING PARALLEL

e REPEAT TIMING SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
at all.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

Script Object

Represents a Script object within the Composition.

Script Properties
name (string)
The name of this item.

An item’s name can be changed by setting this property, with the following
restrictions:

The name can only be changed before any activity has occurred for this
item. It cannot have been started playing yet, cannot have started
repeating yet, no other actions for it can have occurred yet (no other
properties of it can have been set).

The name must be a legal item name (255 chars max, no square brackets or
slashes), and must not be the same name as another item in the same
container.

parent (read only - object)
The parent object of this item.
propertyList (read only - object)

A PropertyList object that allows access to all of the Custom Properties
contained in this object.

systemPropertyList (read only - object)

A SystemPropertyList object that allows access to all of the System Properties
contained in this object.

type (read only - string)
The string “Script”.
children (array of objects)

An array of objects representing the children of this object, if any. Null if the
object has no children.

index (read only - integer)

Returns the position (zero-based index) of this item’s parent’s array of
children.

nextItem (read only - object)

Returns the next item after this one in this item’s parent’s array of children, or
null of this is the last item. In other words, returns the next sibling in the
object hierarchy. Equivalent to:

item.parent.children(item.index + 1)
where “item” is the current item.
previousItem (read only - object)

Returns the previous item before this one in this item’s parent’s array of
children, or null of this is the first item. In other words, returns the next
sibling in the object hierarchy.. Equivalent to:

item.parent.children(item.index - 1)

where “item” is the current item.
forEachValue (read only - string, number, date/time, or null)

If this item is repeating due to a “for-each” repeat, this property contains the
for-each value associated with this instance of the object. This will be a value
in the array used for the for-each.

If this item is not repeating due to a “for-each” repeat, this property will be
null.

repeatIndex (read only - integer)

An integer value that represents the “repeat index” of this item if it repeats,
according to the context in which the current script is executing. The first
repeat starts at index zero. The value is -1 if the current item does not repeat
or has a repeat count of one (in other words, it is -1 if it doesn’t actually
repeat).

playNumber (read only - integer)

An integer value that represents the “play ordinal number” of this item.
Starting with the number 0, each play is assigned a unique number. The
numbers are contiguous (no gaps).

Play number sequences are maintained within the item’s parent only. For
example, if a parent item repeats, then the child items inside each repeat of the
parent will have their own play number sequence starting at 0.

An item will only have a non-zero play number if it repeats. The play number
is equivalent to the repeat index, except that the play number is 0 for items
that don’t repeat or have a repeat count of one, whereas the repeat index
would be -1 in those cases.

playNumberBeforeRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the “playNumber” value of the original
parallel repeat for this item if it has been renewed because a prior parallel
repeat ended. If this is the original parallel repeat, the value of
playNumberBeforeRenewal will be equal to the value of playNumber. If
this item does not repeat in parallel, the value will be zero.

For example, if parallel repeat number 5 of the item ends, but the Renew
parallel repeats checkbox is enabled, the ending repeat will be replaced with a
new, replacement repeat. The new repeat will have new repeat Index and
playNumber values (according to how many other repeats have already

occurred). However, the playNumberBeforeRenewal value will still be 5 in
this example.

This property is always 0 for Composition, Checkpoint, Delay, and Target.

playNumberWithinRenewal (read only - integer)

If this item repeats in parallel with the “Renew parallel repeats” option
enabled, this is an integer value that is the ordinal of the current repeat within
the sequence of repeat renewals. For example, if this is the original repeat,
this value will be zero, but if this is the third renewal of the original repeat this
value will be 3.

If “Renew parallel repeats” is not enabled for this item, or it doesn’t repeat in
parallel, this value will always be zero.

REPEAT TIMING PARALLEL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TIMING SERIAL (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT TYPE COUNT CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

REPEAT DISTRIBUTION CONSTANT (read only - integer)

A constant that can be passed in calls to the “setRepeat” method. (See the
description of the “setRepeat” method.)

Script Methods

object getChild(string childName)

Returns a specific child object by name, or null if there is no child with the
specified name.

object getItemViaPath(string pathType, string path)

Given a path to an item in the Composition object hierarchy, returns the object
in the hierarchy that represents that item.

The “pathType” parameter indicates the starting point of the path within this
item’s container hierarchy. For Scripts, it may have the following values:

“Composition”

The path is relative to the Composition as a whole. (Therefore, the path
must start with the name of a Band.)

“Band”

The path is relative to the Band that contains this item.
“Track”

The path is relative to the Track that contains this item.
“MessageClip” or “Clip” (either one is accepted)

The path is relative to the Clip that contains this item. If nested within
multiple Clips, the path is relative to the lowest-level containing Clip (the
Clip “nearest to” the item in terms of the parentage hierarchy).

“Chain”

The path is relative to the Chain that contains this item. If nested within
multiple Chains, the path is relative to the lowest-level containing Chain
(the Chain “nearest to” the item in terms of the parentage hierarchy).

“Group”

The path is relative to the Group that contains this item. If nested within
multiple Groups, the path is relative to the lowest-level containing Group
(the Group “nearest to” the item in terms of the parentage hierarchy).

“Transaction”

The path is relative to the Transaction that contains this item. If nested
within multiple Transactions, the path is relative to the lowest-level
containing Transaction (the Transaction “nearest to” the item in terms of
the parentage hierarchy).

“I f"

The path is relative to the If that contains this item. If nested within
multiple Transactions, the path is relative to the lowest-level containing If
(the If “nearest to” the item in terms of the parentage hierarchy).

e “Switch”

The path is relative to the Switch that contains this item. If nested within
multiple Switches, the path is relative to the lowest-level containing Switch
(the Switch “nearest to” the item in terms of the parentage hierarchy).

e “Page”

The path is relative to the Page that contains this item.
e “Script”

The path is relative to this Script.

The “propertyPath” parameter contains a property path as specified for “In
Situ Substitution Specifications” (see the separate document on ISSEs).

void clearRepeat ()

Removes any current repeating specification from this item (so that it will play
exactly once).

void setRepeat (int timingType, intRepeat Type, long
control, int distributionType, long
distribution)

Sets a new repeating specification for this item.

The “timingType” parameter indicates which type of repeat timing is to be
used. It must be one of the following values:

e REPEAT TIMING PARALLEL
e REPEAT TIMING SERIAL

The “repeatType” parameter indicates what sort of value is contained in the
“control” parameter. Currently the “repeatType” parameter must always be
set to “REPEAT_TYPE_COUNT_CONSTANT".

The “control” parameter is the count of the number of repeats to be
performed. If the value is less than or equal to zero, the item will not be played
atall.

The “distributionType” parameter indicates what sort of value is contained in
the “distribution” parameter. Currently the “distributionType” parameter
must always be set to “REPEAT_DISTRIBUTION_CONSTANT”.

The “distribution” parameter is a time length, in milliseconds, by which the
start of each repeat is to be offset from the start of the prior repeat. This value
only applies to parallel repeats, and must be set to zero for serial repeats.

void endRepeat ()

Requests that repeating for this item be ended. If this item is not currently
playing, no action is taken.

Note that this is not an “abort” - repeating will be ended after any currently
playing individual repeat of the item completes.

This method is permitted only for serial repeating and for parallel repeating
with the “renewal” option. It is not supported for parallel repeating without
repeat renewal and an error will be generated if it is attempted to call this
method for such a repeat.

For items that repeat serially, this call ends the serial repeating.

For items that repeat in parallel with “parallel repeat renewal”, this call ends
the renewals for the current sequence of parallel renewals, but does not affect
other parallel renewal sequences. For example, consider the case of an item
that repeats 3 times with parallel repeat renewal enabled. This item thus has
3 parallel renewal “lines” that are proceeding in parallel (there will always be
3 instances active at any given time). If this method is called from a Script that
is playing from some repeat renewal that originated from the second repeat,
then there will be no further renewals for the renewal line that started from
the second repeat. However, renewals in the renewal lines that started from
the first and third repeats will be unaffected.

PropertylList Object

An object that provides access to all of the Custom Properties contained within an
item in the Composition. Contained in the “propertyList” property of objects that
represent items in the Composition.

Propertylist Properties
All of the PropertyList properties are read-only.
name (string)
Always null.
parent (object)
The object who's properties are being accessed.

propertyNames (array of strings)

An array of all of the Custom Property names in the item. Can be null if the
item has no Custom Properties.

type (string)
The string “PropertyList”.
children (array of objects)

Always null.

PropertyList Methods
object getChild(string childName)
Always returns null.
void createProperty(string newPropertyName)
Creates a new Custom Property within the item, with the specified name.
var getPropertyValue (string propertyName)
Returns the current value of the specified Custom Property. Can return null.
void setPropertyValue (string propertyName, var newValue)

Sets a new value into the specified Custom Property. The value can be set to
null.

SystemPropertylList Object

An object that provides access to all of the System Properties contained within an
item in the Composition. Contained in the “systemPropertyList” property of objects
that represent items in the Composition.

SystemPropertylList Properties
All of the following properties are read-only.
name (string)
Always null.
parent (object)

The object whose properties are being accessed.

type (string)
The string “SystemPropertyList”.
children (array of objects)

Always null.

SystemPropertyList Methods
object getChild(string childName)
Always returns null.
var getPropertyValue (string propertyName)
Returns the current value of the specified System Property. Can return null.
void setPropertyValue (string propertyName, var newValue)

Sets a new value into the specified System Property. The value can be set to
null.

Example

This example script outputs the following to the Result object:

1. Alist of the names of all of the “current” items in the Composition.

2. Atextual display of the entire Composition item tree, including the names, types,
and properties of all items in the Composition.

var tree = ""';

displayltem($context.composition, ');

$context.result.postMessage($context.result.LEVEL_INFO, *‘Composition object tree', tree);

var currentltems = """

if ($context.currentBand == null)

currentltems += "No Band";

else
currentltems += "Band: " + $context.currentBand.name;
it ($context.currentTrack == null)
currentltems += ", No Track";
else
currentltems += ", Track: " + $context.currentTrack.name;

if ($context.currentClip == null)

currentltems += ", No Clip";
else

currentltems += ", Clip: " + $context.currentClip.name;
if ($context.currentChain == null)

currentltems += ", No Chain";
else

currentltems += ", Chain: " + $context.currentChain.name;
if ($context.currentPage == null)

currentltems += ", No Page";

else

currentltems += ", Page: " + $context.currentPage.name;

if ($context.currentGroup == null)
currentltems += ", No Group";
else
currentltems += ", Group: " + $context.currentGroup.name;
if ($context.currentMessage == null)
currentltems += ", No Message';
else
currentltems += ', Message: " + $context.currentMessage.name;
if ($context.currentBrowserAction == null)
currentltems += ", No BrowserAction";
else
currentltems += ", Browser Action: " + $context.currentBrowserAction.name;

if ($context.currentCheckpoint == null)

currentltems += ", No Checkpoint";
else

currentltems += ', Checkpoint: " + $context.currentCheckpoint.name;
if ($context.currentDelay == null)

currentltems += ", No Delay";
else

currentltems += ", Delay: " + $context.currentDelay.name;

ifT ($context.currentScript == null)

currentltems += ", No Script";
else

currentltems += ", Script: " + $context.currentScript.name;
ifT ($context.currentTarget == null)

currentltems += ", No Target';
else

currentltems += ", Target: " + $context.currentTarget.name;

$context.result.postMessage($context.result.LEVEL_INFO, *Current items', currentltems);

function displayltem(item, indent)
{

if (item == null)

{

tree += indent + "(null)";

3

else

{
tree += indent + "\'"" + item.name + "\", type: " + item.type + '"\n";
tree += indent + " Parent: ";

if (item.parent == null)

{
tree += "(none)\n";
3
else
{
tree += item.parent.name + "\n";
var parentChild = item.parent.getChild(item.name);
if (parentChild == null)
$context.composition.abort(*"Unable to get child from parent, object \'"" + item.name +
"\
else if (parentChild != item)
$context.composition.abort(*'Parent"s child does not match, object \'"" + item.name +
I Y
3
if (item.type == "Message" || item.type="Browser Action’)
{

var target = item.target;

if (target '= null)

{
tree += indent + " Target:\n";
tree += indent + " \""" + target.name + "\", type: "
b
3
else if (item.type == "Clip")
{

var targets = item.targets;
if (targets = null)
{
tree += indent + "
for (var i = 0;

{

tree += indent + "' A\

var propertyList =
if (propertyList = null)
{
var propertyNames =
if (propertyNames I= null)

{

tree += indent + "'

for (var i = 0;
{

tree += indent + "'

i < targets.length;

i < propertyNames. length;

Name: \"*

Targets:\n";

i++)

+ targets[i].name +

item.propertylList;

propertyList.propertyNames;

Properties:\n";

i++)

"\", type: "

+ target.type + '\n"';

+ propertyNames[i] + "\", Value: \"" +

propertyList.getPropertyValue(propertyNames[i]) + "\'"\n";

+ targets[i]-type + "\n";

propertyList.setPropertyValue(propertyNames[i], "A string value™);
if (propertyList.getPropertyValue(propertyNames[i]) != "A string value'™)

$context.composition.abort(*'Unable to set value of property \'"" + propertyNames[i]
+ "\" to a String.");

propertyList.setPropertyValue(propertyNames[i], 123);
if (propertyList.getPropertyValue(propertyNames[i]) != 123)

$context.composition.abort(*'Unable to set value of property \'"" + propertyNames[i]
+ "\" to an Integer.");

propertyList.setPropertyValue(propertyNames[i], 123.456);
if (propertyList.getPropertyValue(propertyNames[i]) != 123.456)

$context.composition.abort(*'Unable to set value of property \'"" + propertyNames[i]
+ "\" to a Float.");

propertyList.setPropertyValue(propertyNames[i], new Date(*'Sun Sep 24 14:15:16 PDT
2006'));

if (propertyList.getPropertyValue(propertyNames[i])-toString() != "Sun Sep 24
14:15:16 PDT 2006')

$context.composition.abort('Unable to set value of property \'"" + propertyNames[i]
+ "\" to a DateTime.");

propertyList.setPropertyValue(propertyNames[i], null);
if (propertyList.getPropertyValue(propertyNames[i]) != null)

$context.composition.abort(*'Unable to set value of property \'"" + propertyNames[i]
+ "\" to null.");

var children = item.children;

if (children != null)

{

tree += indent + " Children:\n";

for (var i = 0; i < children.length; i++)

{

displayltem(children[i], indent + ™

SOASTA, Inc.

444 Castro St.
Mountain View, CA 94041
866.344.8766
http://www.soasta.com

	About SOASTA CloudTest™ Scripts
	JavaScript Support
	About This Guide
	Quick Overview
	CloudTest Architecture
	Scripts in SOASTA CloudTest

	SOASTA CloudTest Object Model
	JavaScript Extensions
	 SOASTA CloudTest Objects
	Result Object
	Send Hello, World to a Result
	Stop a Composition from a Script

	Data Generation Scripts
	Script 1: Random Number/String Generator
	Script 2: Generate a Random Number of 7 or 8 Digits
	Script 3: Using Properties to Generate Unique Data
	Script 4: Generate Guaranteed Unique Numbers Based on a Timestamp
	Script 5: Generate Current Timestamp in Milliseconds or Seconds
	Script 6: Generate Current Timestamp in “T” Format

	Data Seeding Scripts
	Script 1: Single-element Data Array, Choose One Randomly
	Script 2: Single-element Data Array, Choose Six Randomly
	Script 3: Single-element Data Array, Select Unique Values
	Script 4: Single-element Data Array, Select Unique Values – second example
	Script 5: Two-element Data Array, Choose One Record Randomly
	Script 6: Two-element data array, increment through values
	Script 7: Seed data from URL
	Script 8: Seed Data from URL – second option
	Script 9: Put an Array into a Clip Property

	Extraction Scripts
	Script 1: Extract from Response Body (HTML)
	XPath Samples Table

	Script 2: Extract from Response Body – SubString
	Script 3: Extract from Response Body (JSON)
	Script 4: Extract from Response Header
	Script 5: Extracting Data from a Message TWO Prior
	Script 6: Extracting and Encoding a VIEWSTATE and EVENTVALIDATION
	Script 7: Extracting and Encoding a VIEWSTATE
	Script 8: Verify Something Exists in a Response before Attempting Extraction
	Script 9: Extract HTTP Status Code from Response
	Script 10: InfoPath Forms Services 2007/MOSS variable extraction
	Script 11: Find all JPG/PNG ‘IMG SRC’ Links in an HTML Response
	Script 12: Extract a Substring Using Regex in JavaScript

	Validation Scripts
	Script 1: Throw an Error If a Specified Value Does Not Exist in the Prior Response
	Script 2: Throw an error if a specified value does exist in the prior response
	Script 3: Throw an Error if a Specified Value Does Not Exist in the Prior Header
	Script 4: Validate If a String Is Numeric

	Error Detection and Handling Scripts
	Script 1: Set All Play counts = 1
	Script 2: Set Play Count for Subsequent Clip Elements to 0 If an Error Is Detected
	Script 3: Stop Current Clip If an Error Is Detected
	Script 4: Set All play Counts = 0 if “authid” Is Not returned
	Script 5: Disable Chain If Value Not Found in Response
	Script 6: Check for ErrorRedirect Response
	Script 7: Compare Response to Message Property and Take Different Actions on Result (Enable ErrorHandling Chain If Error Occurs)
	Script 8: Try/Catch Example

	Target/Hostname Modification Scripts
	
	Script 1: Handle Dynamic HTTP 302 Redirects
	Script 2: Override a Target’s URL for the Instance of a Clip
	Script 3: Override a target’s use of HTTP/HTTPS for the instance of a clip
	Script 4: Host Override in Header

	Miscellaneous Scripts
	
	Script 1: Stop Test Clips (and Optionally Clip Repeats) via Script
	Script 2: Clear Response from Prior Message
	Script 3: Random Think Times
	Script 4: Abort a Script and Consider It an Error with Custom Error Text
	Script 5: Encoding Text
	Script 6: Math Calculations using “ISSE” Expressions
	Script 7: Extract All Links from a Given Response
	Script 8: Determine Dates 30 and 31 Days from Now
	Script 9: Reading a Clip Property into a Test
	Script 10: Trim Spaces in a String
	Script 11: Conditional Logic using Chains and Random Numbers
	Script 12: Replace Spaces with Plus (+) Signs
	Script 13: Dynamically Set Chain Repeats
	Script 14: Retrieve the Current Cookie Values
	Script 15: Replace the Cookie List with a New List
	Script 16: Find the Current Cookie and Change Its Value
	Script 17: Add a New Cookie to the Cookie List
	Script 18: Set only the next delay to a random value
	Script 19: Check for 200 status code; stop clip if not found

	SOASTA Extension Reference
	Context Object ($context)
	Context Properties
	Context Methods

	CustomProperties ($prop)
	CustomProperty Methods

	SystemProperties ($sysprop)
	System Property Methods
	System Properties

	System Utilities ($util)
	System Utilities Methods

	GlobalProperties ($globalprop)
	Global Property Methods

	Result Object
	Result Properties
	Result Methods

	 Composition Object
	Composition Properties
	Composition Methods

	Band Object
	Band Properties
	Band Methods

	Track
	Track Properties
	Track Methods

	
	Target Object
	Target Properties
	Target Methods

	Clip Object
	Clip Properties
	Clip Methods

	Chain Object
	Chain Properties
	Chain Methods

	Group Object
	Group Properties
	Group Methods

	Transaction Object
	Transaction Properties
	Transaction Methods

	If Object
	If Properties
	If Methods

	Switch Object
	Switch Properties
	Switch Methods

	Page Object
	Page Properties
	Page Methods

	Checkpoint Object
	Checkpoint Properties
	Checkpoint Methods

	 Message Object
	Message Properties
	 Message Methods

	 BrowserAction Object
	Browser Action Properties
	BrowserAction Methods

	Delay Object
	Delay Properties
	Delay Methods

	Script Object
	Script Properties
	Script Methods

	PropertyList Object
	PropertyList Properties
	PropertyList Methods

	SystemPropertyList Object
	SystemPropertyList Properties
	SystemPropertyList Methods

