SCASTA

TouchTest™ Android Tutorial

SOASTA TouchTest™ Android Tutorial

©2015, SOASTA, Inc. All rights reserved.

The names of actual companies and products mentioned herein may be the
trademarks of their respective companies.

This document is for informational purposes only. SOASTA makes no warranties,

express or implied, as to the information contained within this document

Table of Contents

Why Mobile APP TeStING? ... eeeeerteeteteeeeeteessesasessesssssassasssssssssssassnsns 1
TOUCHTESED BASICScecueueururerereneneneeeeseseneasasssasasssssssssesssessssasasassssssssssssssesessssssasasssssssssssssssssseseas 1
What Does TOUCh TSt RECOTA?........ ittt 2
TOUCNTESE™ fOr ANAIOIG .. oottt ettt 2
TOUCNTEST™ HYDIIA ...ttt sttt st 2
GEttiNg STArted ...ttt seesaecseeeeseesassneesessassassnsessessesassnssssssasaasassnsns 3
Prer@QUISITES......coeieeeeeeeeeeteeceeeeete ettt et e as e e e snssasssssssssassasssssssssesnssnsanses 4
Configuring the Android Device . . -
BUIld Prer@qUISITES ...ttt ts s e e s sse s s st st s ssssasss s sss s sasssnasn 5
Using the TouchTest Gradle Plugincoiiiiiiieeeececeeeeeeeceeeeeaseaeenees 7
Revise Your Gradle Build SCriPtcoiiiriirieincectncnnceceecsastenssscenssssssassssnsesssssnsans 7
Inspecting the Mobile App in TouchTest® (Native or Hybrid)c.cccocevviiinvinnnninncnnanncn. 12
Install TouchTest Agent & Register Device to Use TouchTest.........ccccoeeeeecercranancene 15
Associating Mobile Apps With @ SPECIfIC DEVICE.........corvrvrrieerirriiserisiesies e sssssssssssesses 20
Recording a TouchTest Scenario (All USErS)ccoeieieiecienernreeeseeneecenenseceseesessasencens 21
Create @ TOUCRTEST™ ClIP c..ccieieeeieeeeeeeeeeeneeeeeeeeneenesseeseessessessssesseessesseseeseesessessessassassassassesns 21
PAUSE RECONTING .oooririeiiriiiieiii ittt sttt 24
Recording a Droidfish SCeNArio (NALIVE) ...t sssssssssesssseens 25
Recording a Zirco Browser SCenario (HYDIid)......oooieieceerinreseeeiseseesseeesssessssessessssssessssssseees 30

Adding an Interval Delay between Each Action (All USErs).....cccoeneeneinseineineeinecnecenecieeens 32

Create @ COmMPOSItioN (All USEIS)coieereeieieieieneeenreneeeeeesnenseneessessessssnsessessessssassnsonees 33
Playing @ COMPOSITION ...ttt sttt sttt st st ss s sstssassasssan 35
Result Details (DroidfiSh) ... eieiiereeeeeeeeeiereecneeesneeesseeessseessssessssesesssessssssssssssssssessssasessns 36
ReSuUlt Details (ZIirCO BIOWSEK)uuieeeeeeeereeeerererereeeneeesseessseessssesssssessasesssssessssasssssasssssessssasssnne 39
Identifying and Analyzing Common Errors reetestetetentsstsstsstsstsstsstssssntentans 42

Network or COmMMUNICATION EITOTS......oiiiieceeeeiecie et ss bbb 42
App Action and Other Errors (All USEIS) ... irinieeieiiesiesssissses 42
Advanced Clip Editing (Droidfish)c.ccceeeoioieninnnninicieensesneeneeeeseesnesnseneessesessnsencnes 44
Inspecting App Action Details (DroidfiSh) ... 45
App Action Properties (DroidfiSh) ... s sssss s s s sssesses 46
Adding OUtPULS (DrOIATISN) ...ttt ss st ssssnes 49
Inspecting OUtPULS (DrOidfiSh) ...ttt ssss s ssssseees 51
Add an Image Validation (DroidfiSh) ... sssssssssss s ssssssseees 53
Add a Text Validation (DFOTATISN) ...t ee e eesee e ese e 54
Analyzing Validations in Results (DroidfiSh) ... ssssssssssseenes 57
Advanced Clip Editing (ZircO BrOWSET)ccceeiecieeereerereeeneecensnsensecessssnssnsensessessssasensones 61
Inspecting App Action Details (ZirCO BrOWSEN).........oovreerrenrieeririieeiessissssissssssssessssssssesssssssssssneses 63
App Action Properties (ZIirCO BrOWSEN) ...t ssanes 64
AddIiNG OULPULS (ZIrCO BIOWSEN)coumreereermeeieeiieesiseesseesiseesssessssssssssesssssssssessssesssssessssessssesssnesssssesssneses 64
Inspecting OULPULS (ZIrCO BrOWSEN).....ccuucueeeieeeieeeieciieesiseeseseesessessssesssssessssesssssesssessssssssssesssssssssneees 67

Add an Image Validation (ZirCO BrOWSEN) ... eiseesesissesse s s s s s s ssassses 70

Adding an HTML Validation (ZirCO BrOWSEN).........cowwrerieeeeeieieeiiseiisssisssesssssssssssssssssssssssssssssssssssses 71
Analyzing Validations in ReSUItS (ZIirCO BrOWSEN) ... sesssssssssssssssssssssssssssses 72
Appendix I: Using TouchTestIDs in Your Project Source Code............ccceeeeercurncnncnee. I
Adding TouchTestIDs to an Android (Native) APP.....ccccceeeeereereereereereeseeseeseeseeseeseesesseesessessesnes I
Adding TouchTestIDs to an Android (Hybrid) APpP .cccccceeeeeeeeeeenneeeeeeeeeeeeeeeeeeeeeeneeseenes n
Appendix Il: Adding a Mobile App Manually (Mobile Administrator) Y
Appendix Ill: Using Eclipse (Eclipse Developer Only)ccoiiereennnenreccneeseeseesnneneens 6
Installing the ADT fOr MAC OS Xt ssss st sss s sssessssssssssss s ssssssssssssessssssssnes 6
INStalling the ADT fOr WINAOWS ...t st sssssssessssssssssss s ssssssssssssessssssssnes 6
Downloading MakeAppTouchTestable Software (Eclipse Developer Only)............c.ccccu.u..... 8
ADOUL the ECliPSE EXAMIPIES ...ttt sttt s ssnes 8
Importing the DroidFish Project in ECHPSE ... 9
Configuring the NDK Builder (DroidfisSh ONIY) ... sesessiessssssesssssssssseens 14
Setting Up the Droidfish Project in Eclipse (Native App Developer).........cccccceveeeeeenenenee. 17
Importing the DroidFish Project in ECHPSE ...t eseeees 18
Configuring the NDK Builder (Droidfish ONIY) ... esessssessssssssseseens 23
Setting Up the Zirco Browser Project (Hybrid App Developer)...... e 26
IMporting the ZirCo BroOWSEr PrOJECt. ...t ssssssssss s ssssses 27
Using the MakeAppTouchTestable Utility (Developer Only)ccocovieininninnnnnnennennenennen. 31
Static vs. DynamicC INSTrUMENTATION ...t ess s sssesenes 31

Making the DroidFish APK TouchTestable (Native Developer Only)cconnenecnncinnecnecen. 32

Making the DroidFish Project TouchTestable (Native Developer Only) ... 34
Making the Zirco Browser APK TouchTestable (Hybrid Developer Only).......cccovvcvnionriec. 37
Making the Zirco Browser Project TouchTestable (Hybrid Developer Only).......ccccoeeoneeunncee. 40
Inspecting a TouchTestable Project (Native or Hybrid using project method)........cccooccuuec.. 43
Install using Eclipse 47
Install from the Command Line USING @db ... 49

Why Mobile App Testing?

TouchTest® Mobile, featuring TouchTest™ technology, delivers for the first time,
complete functional test automation for continuous multi-touch, gesture-based mobile
applications. TouchTest™ technology delivers fast, precision functional testing while

increasing the stability of automated tests across releases.

TouchTest controls mobile devices through a lightweight web service called
TouchTest™ Agent. Devices can be dedicated to testing in the lab, used as part of an

external test, or crowd-sourced as part of a high volume, globally distributed test.

TouchTest support is provided for recording user actions within any Android SDK

version 2.3.3 or greater.

TouchTest® Basics

SOASTA TouchTest® provides fast, effective performance, load and functional test
automation of any modern Web application, Web service, or mobile application in a
lab, staging or production environment using unique visual programming and multi-
track user interfaces. The TouchTest platform can utilize both public and private cloud

resources to assure any web or mobile application won't fail under peak user traffic.

The Composition is the test itself as presented in the Composition Editor, and
contains one or more Clips arranged on Tracks and governed by user-specified
sequence and tempo. The Composition Editor is a player, debugger, and the

dashboard where results are analyzed.

The Clip is the basic building block of a test as built in the Clip Editor and has a
Target such as a web site, or in the case of TouchTest™, a mobile app. A clip can be
thought of as a visual script that is composed of a series of timed or sequenced
events, which correspond to gestures performed on the mobile device. It can contain
messages, browser or app actions, and scripts, as well as delays and checkpoints—all
of which can be organized into containers (i.e. groups, chains, transactions, etc.)—and

parameterized as required.

TouchTest clips are recorded directly from the mobile app and added to the Clip as

you perform them on the mobile device.
What Does Touch Test Record?

TouchTest™ records the details of actual gestures and events that invoked on the app
that is tested. These gestures and events are represented within the Clip Editor as
App Actions. Precision recording captures and plays back all continuous touch

gestures including pan, pinch, zoom and scroll.

Each gesture you perform on a TouchTest-enabled device is precisely, and

automatically, added to the test clip as an App Action.

Like any clip element within TouchTest®, App Actions have inputs and outputs, as well
as properties, waits, and validations that can be parameterized. Additionally, an App

Action can be added to any containers (e.g. transactions, groups, etc.).

TouchTest™ for Android

TouchTest™ for Android brings the innovative functional test automation capabilities of
TouchTest™ to Android mobile apps on your Android device or emulator.

When combined with Android, TouchTest™ technology delivers precision functional testing
that increases the stability of automated tests across releases.

TouchTest® can launch Android mobile apps that are under test using the Android mobile
app, TouchTest™ Agent. Devices can be dedicated to testing in the lab, used as part of an
external test, or crowd-sourced as part of a high volume, globally distributed test.

Using SOASTA TouchTest™ Driver, which is compiled into the app under test, support is
provided for recording, playback and validations of user actions within any Android device.
There is no need to jailbreak the Android device and the device can be untethered.

TouchTest™ Hybrid

TouchTest™ Hybrid extends TouchTest mobile app support to include the recording and
playback of Android hybrid apps. Hybrid mobile apps in Android are those mobile apps that
render a web page as a portion of its content.

TouchTest Hybrid extends the TouchTest native mobile app support to every Android mobile
app on your device.

When you record a TouchTest clip in a hybrid mobile app, the new App Action type, webClick
appears in the test clip.

Getting Started

The tutorial is written for TouchTest or TouchTest Lite users who are either Android
developers and/or testers, and who want to learn to use TouchTest and TouchTest
Hybrid techniques to test their own mobile apps. The preferred method for deploying

TouchTest is Gradle because it simplifies integrating TouchTest.

Steps are provided for using the TouchTest Gradle Plugin (with Android Studio).
Additionally, for Eclipse users, the MakeAppTouchTestable utility is provided. Eclipse
and MATT instructions are found in Appendix Ill at the end of this tutorial.

To use TouchTest techniques for test creation on a ready-to-test, proceed with

Recording a TouchTest Scenario below.

e For test creation examples, we'll first record a basic TouchTest test clip using
each mobile app, then add that test clip to a test composition and play it to
see initial results; after which we'll refine each test clip by adding outputs and
validations, and then finally, we'll analyze the results of a fully articulated test

composition.

If you are a tester with a device where the mobile app is installed, but you still need
to register a TouchTest Agent on it, begin with the Preparing an Android Device

section.

Prerequisites

TouchTest™ recording is performed by any TouchTest user by accessing or deploying

the following TouchTest® components on the desktop and on a Android device

running 2.3.3 or later:

Note:

The TouchTest® (or TouchTest® Lite instance) where the user has rights and

will login to start recording.

The TouchTest™ Agent; a per mobile device agent pointed at the same
TouchTest®/Lite instance installed on the Android device. The TouchTest Agent
app will be installed from the TouchTest, Resources page onto the given
Android device. Download and registration instructions are included in the

following sections.

If you're using the Appcelerator Titanium Studio—refer to the TouchTest™

for Appcelerator Android Tutorial instead of this tutorial.

The mobile app to test. For this tutorial, two sample apps are presented, but
you can also use your Android native or hybrid mobile app. The deployed
mobile app and its corresponding entry in TouchTest's Central > Mobile Apps
list must share the same launch URL in order for testing to succeed as

discussed in the MakeAppTouchTestable sections below.

Configuring the Android Device

The Android Device must first be in Developer mode. Note that the Developer

Options section is not shown by default in Android device Settings. A secret

handshake is required.

Use the following steps to enable Developer mode on the device:

1.

2.

Tap Settings

Tap About phone.

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Appcelerator_Android_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Appcelerator_Android_Tutorial.pdf
http://blog.immersion.com/2013/05/developer-options-galaxy-s4/
http://blog.immersion.com/2013/05/developer-options-galaxy-s4/

3. In the About phone section. Tap the list item labeled Build Number seven

distinct times.

4. After 3 taps, each tap shows a new toast message encouraging you to keep

going. After the last tap, the message "You are now a developer” appears.
Subsequently, your Android device should also have the following Settings:

e In the device settings, tap Developer Options and check the USB Debugging

box.

e In the device settings, tap "Security" and then tap to check the Unknown

sources box.

Optionally, you can also enable Android's built-in equivalent of TouchTest's (iOS only)

Head's Up Display by using the following device steps:
1. On the mobile device or simulator, go to Settings, Developer options.
2. Enable Show touches.
3. Enable Pointer location.

Refer to TouchTest Head's Up Display for ideas about how to use this optional feature

using Android's own built-in HUD-like display.

Note: TouchTest Agent must be installed on the device. Instructions to install it

are included below.

Build Prerequisites
With Gradle, no additional utility downloads or separate build steps are necessary.

Note: Periodically, plugin updates will be released, increasing the Gradle Plugin
number. The plugin number in your build.gradle file must match the latest

Gradle Plugin version.

This is because Gradle downloads the necessary JAR files, builds and the Android app,

and creates the corresponding mobile app object in the Central > Mobile Apps list.

http://cloudlink.soasta.com/t5/Knowledge-Base/TouchTest-Head-s-Up-Display/ba-p/14953

Note: Eclipse developers can find additional Eclipse-related instructions in the
Appendix Il section at the end of this tutorial. Gradle automates most of

the Eclipse steps that are quite involved.

Using the TouchTest Gradle Plugin

With the TouchTest Gradle Plugin, Android Studio users have a simple, effective

means to quickly get TouchTest integrated into existing Android apps.

Revise Your Gradle Build Script

Make the following modifications to add the TouchTest Gradle Plugin to your project.
Because Gradle will automatically download the necessary JAR files, once these
changes are made, no separate download or build steps are required, Gradle will do

them automatically.

Note: Periodically, plugin updates will be released, increasing the Gradle Plugin
number. The plugin number in your build.gradle file must match the latest
Gradle Plugin version.

In Android Studio, Central Repository, make the following project changes.

1. In the example below, add the build.gradle line(s) that follow after the

comment: //Add the following line

buildscript {
repositories {
jcenter ()
}
dependencies {

classpath 'com.android.tools.build:gradle:1.2.3"

//Add the following line

classpath 'com.soasta.touchtest:touchtest-plugin:1.2"'

apply plugin: 'com.android.application'

//Add the following line

apply plugin: 'com.soasta.touchtest'

repositories {

jcenter ()

}

configurations {

soasta

}

dependencies {

compile fileTree(dir: 'libs', include: ['*.Jjar'l])

compile 'com.android.support:appcompat-v7:20.+"'

soasta 'com.soasta.touchtest:touchtestdriver:1.0'

}

2. Create a new file called touchtest.properties and then add the following

properties:

TouchTestURL=http://67.111.67.24:8080/concerto

Concerto url of CloudTest server

TouchTestUserName=admin

CloudTest user name

TouchTestPassword=password

CloudTest user password

TouchTestTenant=SOASTA

Tenant in CloudTest environment

OverwriteMobileApp=true

If a Mobile App already exists, it gets overwritten when true, left alone otherwise
AppLaunchURL=touchtest-gradle-example://

This launch url will be used when present, a system generated launch url would be used otherwise

3. Build an Android app by doing one of the following:

e Run a debug build in Android Studio.

) oK ®

-

® ® @7 MainFragment.java - git

E3 github-status = 3 GithubStatus = 2] src * £ main = [java Run (°R) [51 deange ' [2] githubstatus © B ui © @ MainFragment
G v . | X~ B¢ @ Al iragment.java
v [3github-status (~/Downloads/github-status) >ana) tatus.model.Status
> .gradle co] .githubstatus.ui.view.SliceView;
» [.idea
» [build
» [GithubStatus irrent.atomic.AtomicInteger
» [gradle
[E] .gitignore
(2, build.gradle

7: Struc

® =
<] /
» L

Il github-status.im| 3 e hLayout.OnRefreshListener
El gradlew p iew.0OnScrollListener

/iewFac
B LICENSE .ViewFact

EﬁlocaLproperues String TAG = MainFragment. .getSi
[El README.md
(& settings.gradle
v il External Libraries
» I < Android APl 21 Platform >

©- Captures

String KEY_STATUS = TAG +
1UM_UPDATE_DURATION =
TAL_COMPONENTS =

Or, in a Terminal window, do:

gradle clean assembleDebug

[Giris-Retina-MacBook-Pro:GithubStatus girisenji$ pwd
/Users/girisenji/Downloads/github-status/GithubStatus
[Giris-Retina-MacBook-Pro:GithubStatus girisenji$ gradle clean assembleDebug *—
:GithubStatus:clean

:GithubStatus:preBuild UP-TO-DATE

:GithubStatus:preDebugBuild UP-TO-DATE
:GithubStatus:checkDebugManifest

:GithubStatus:preReleaseBuild UP-TO-DATE
:GithubStatus:prepareComAndroidSupportAppcompatV72103Library
:GithubStatus:prepareComAndroidSupportRecyclerviewV72102Library
:GithubStatus:prepareComAndroidSupportSupportV42103Library
:GithubStatus:prepareComGoogleAndroidGmsPlayServices3159Library
:GithubStatus:prepareComMakeramenRoundedimageviewl30Library
:GithubStatus:prepareComMelnykovFloatingactionbuttonl20Library
:GithubStatus:prepareDebugDependencies
:GithubStatus:compileDebugAidl
:GithubStatus:compileDebugRenderscript
:GithubStatus:generateDebugBuildConfig
:GithubStatus:generateDebugAssets UP-TO-DATE
:GithubStatus:mergeDebugAssets
:GithubStatus:generateDebugResValues UP-TO-DATE
:GithubStatus:generateDebugResources
:GithubStatus:mergeDebugResources

e gradle clean installDebug

After performing either of the above build methods, the example appl/ication-

debug.apk is Touch Testable.

Next, do the following to install the Android app to a device:
e gradle clean installDebug
Your application-debug.apk is now testable using TouchTest.

Empty project’s build.gradle

lapply plugin: 'com.android.application’

android {
compileSdkVersion 22
buildToolsVersion "23.0.0 rc3"

defaultConfig {
applicationId "com.soasta.myapplication"
minSdkVersion 19
targetSdkVersion 22
versionCode 1
versionName "1.0"
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'l)
compile 'com.android.support:appcompat-v7:22.2.1"

10

Typical project’s build.gradle

build.gradle — soasta/.../touchtest-plugin build.gradle — sampleApps/android/touchtest-example

buildscript {
repositories {
jcenter()
}
configurations.all {
// check for updates every build
resolutionStrategy.cacheChangingModulesFor @, 'seconds'
}
dependencies {
classpath 'com.android.tools.build:gradle:1.2.3"'
}

¥
apply plugin: 'com.android.application'

repositories {
jcenter()

}

configurations {
compile
runtime

}

android {
compileSdkVersion 22
buildToolsVersion "23.0.0 rc3"

defaultConfig {
applicationId "com.soasta.gradlesample"
minSdkVersion 19
targetSdkVersion 22
versionCode 1
versionName "1.0"
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

dependencies {
compile fileTree(dir: 'libs', include: ['kx.jar'l)
compile 'com.android.support:appcompat-v7:22.2.1"

11

Inspecting the Mobile App in TouchTest® (Native or Hybrid)

Once Gradle (or for Appendix Ill users, Eclipse) creates the Central, Mobile App object,

you can locate an entry for the given mobile app in the Central > Mobile Apps list.

TIP: This mobile app object appears by name in the Choose Device Agent and
Mobile App box whenever end-users start a mobile app recording.
Selecting which mobile app to launch, on which test devices, is a crucial
end-user step. You will need to be familiar with its uses in order to record

and perform all of the subsequent test-building steps.

1. Verify that your Mobile App has been added by logging into TouchTest® and
looking for its entry in the Central > Mobile Apps list.

e For example, in the screenshot below both DroidFish and Zirco Browser apps

appear are listed.

L) el 10 (%) () ()

MName £, Path

B Compositons 3 DroigFish i
a Clips ﬂZircn Browser !
'@ Recordings

B} Device Agents

(&) Targets

0 scripts

Seed Data

‘E Welcome

12

e Double-click the Mobile App to inspect its details.
The Mobile App detail form appears.

All of the fields shown were populated from the project, with the exception of

Supported Device Type and Minimum OS Version.

e The DroidFish mobile app detail is shown below

W8 | v [ad | Al
Name DroidFish
Description
A
Version
05 | Android

Minimum O3S Version
Launch URL touchtest-Oac 3eT48-dbal-4968-34f5-TBEa20d48f4c./

| Stockfish_icon9.png |

leon

13

14

Install TouchTest Agent & Register Device to Use TouchTest

Once the mobile app is built, installed, and the corresponding mobile app exists in
SOASTA Central, use the following steps to install an agent. The TouchTest™ Agent is
responsible for launching the apps that are being tested on a given device. This

Android app runs in Android devices running 2.3.3 or later.

To get started, download the TouchTest Agent onto the mobile device and then
perform the one-time registration steps that will enable your device for use with

TouchTest.

1. From your Android device, download the TouchTest Agent Android app from
the Resources page. Tap on the downloaded TouchTestAgent.apk file (usually

found in the device's notification tray) to start Install.
Downloads

B Make App TouchTestable Utility
8 TouchTest Web iOS Project

{8 i0S App Installer Utility
[} TouchTest Agent Android app
|} TouchTest Web Android app

2. When the installer appears, tap Install to proceed.

3. Once install completes, tap Open to launch the TouchTest Agent app on the
Android device. When you do so, the app launches and the TouchTest Agent

splash screen displays.

15

SCASTA
TouchTest” Agent

TouchTest for Android, featuring SOASTA's TouchTest technology, delivers
complete mobile web functional test automation to Android. TouchTest allows
developers and testers to create functional tests by capturing and quickly
playing back gestures on mobile apps

TouchTest delivers precise, accurate testing. Our rich visual interface provides
out-of-the-box test building features, including waits, validations, outputs,
repeats, conditionals, reusable components and many more. Real-time analytics
present your test results in an intuitive, easy-to-read format. Multiple devices
can be dedicated to your tests, either in the lab, as part of an external test, or
crowd-sourced as part of a globally distributed test.

http://10.0.1.55:8080/concerto/touchtest 0

4. Enter the TouchTest URL for TouchTest, which is your own server with

/concerto/touchtest appended:

http://<TouchTest server>/concerto/touchtest

For example, a user with an Apple router running TouchTest Lite might connect

to:

http://10.0.1.9/concerto/touchtest

5. Tap Go. The TouchTest Agent opens the provided URL and a spinner appears

as the app auto-registers itself.

16

SCASTA
TouchTlest” Agent

6. Once the spinner disappears, enter your TouchTest user name and password

and tap Login. If the spinner hangs, tap the screen to clear it.

7. When prompted, give the TouchTest Agent a name. For example Soasta Demo
Nexus. Note that this name will be used throughout the product to refer to this
device. Once entered the device name can only be changed by an

Administrator.

17

8. The TouchTest Agent page will appear with the status Connected for the first
time. On subsequent launches click Login to Connect and Logout to

Disconnect.

SCASTA
TouchTest” Agent

Status: Build:
@ Connected 756

CloudTest URL:
http://ctmobile.soasta.com/concerto

User Name:
SOASTA_DOC

Notes: You can also download the TouchTest Agent on the /touchtest URL of the

TouchTest Environment.

If these steps have already been performed on a given device, proceed to

Recording a TouchTest Scenario below.

18

19

Associating Mobile Apps with a Specific Device

Once a device is approved, use the following steps to assign one or more mobile

apps to that device.

1. In Central > Device Clouds, select the mobile device. For example, Soasta Demo

Nexus as shown below.

Name Y Model os Status

e — ——rro e]

|B)) Soasta Demo Nexus Nexus 7 Android 4.1.2 @ Connected

You may approve up to 1000 devices. You have 7 approved devices and 877 device deactivations remaining.

."'. ."\ i .-". i ."'.
General ' Mobie Apps | Dependencies \

| | Name
¥ 3 DroidFish
[¥ KitchenSink_Android

™ ﬂ Zirco Browser

2. In the lower panel, click the Mobile Apps tab. If necessary, use the Maximize

button to increase the workspace.

3. Check the Mobile App(s) that you want to authorize this device to access. For

example, DroidFish and/or Zirco Browser.

4. Click Save on the lower panel toolbar before proceeding.

L&) |

m‘fi_,. s | « Properties saved. r
@ Connected

|) &3]

20

Recording a TouchTest Scenario (All Users)

Once the TouchTest Agent profile is installed and device access approved you are

ready to record and playback your TouchTest.
e Create a new test clip within TouchTest® for your native or hybrid app.

e Click Record within the Clip Editor and then choose Mobile App Recording, specify
the Device Agent, and then the native or hybrid mobile app whose actions you

want to record.
e Perform the app actions on the mobile device to capture them in the new test clip.

These steps are described in the remainder of this tutorial.

Create a TouchTest™ Clip

Prepare your device for recording and create a new clip that will be used to perform

mobile app recording and serve as the basis for your TouchTest.

1. Open the TouchTest Agent on your mobile device, and click Login (your

previously entered username and password should be auto-populated).

SCASTA
Touchlest” Agent

Status Build:
@ Connected 756

CloudTest URL:
http://ctmobile.soasta.com/concerto

User Name:
SOASTA_DOC

Once successfully logged on, the device Status will be Connected.

21

e Login to TouchTest on your desktop computer and select Central > Clips, and

then click New on the Central toolbar.

i Y & untited TestClp

Record

Click the Record drop-down to begin a mobile
app recording.

A new Untitled Test Clip opens in a Clip Editor tab. A Record pop-up identifies the
Record drop-down.

e Once ready, click the Record button and then select Record Mobile App.

I vrecs
D (ELE1E) (X (@] WLl

| Operation | Farameter 1 [? Record Mobile App
[B® Record Mobile Web

e Record Browser

22

The Choose a Device Agent and Mobile App box appears.

2. Select the TouchTest Agent that you created above and also select the mobile

app you'd like to test.

Note that in the shot below mobile apps are listed for the select device agent

(i.e. Soasta Demo Nexus and Zirco Browser).

Choose a Device Agent and Mobile App

Device Agent

Namg | os | Status

B) ipad-tester100 #i0s 5.1 @ Disconnected
8) Mrunal's iPad #i0s 6.0 @ Disconnected
B)) 20ASTA Demo iPad ®i0s 7.0.2 @ Disconnected
B)) s0ASTA Demo iPhone 2 #i056.1.3 @ Disconnected
B)) Soasta Demo Nexus Android 4.2 @ Connected
B)) s0ASTADOC iPhone #i0s5.1.1 @ Disconnected
8)) SOASTADOC iPhone? %i0s6.1.3 @ Disconnected
Maobile App

Nami | Varsion

B oroiorish

¥ KitchenSink

2! Zirco Browser

[

Or, alternately, Soasta Demo Nexus and Droidfish.

Maobile App
Name | Version

%! DroidFish

ﬂ Zirco Browser

3. Click the Record button in the wizard once your selection is made. TouchTest

Agent will launch the selected app on the selected device.

23

Note: If the Mobile Device Administrator (or TouchTest Lite user) has completed
the steps above to associate one or more mobile apps with the device,
those apps will appear in the Mobile App list whenever that device is
selected. If no mobile app has been defined for the selected device agent,

the Mobile App list will be empty (shown below).

TIP: For developers and admins both, ensure that the Make App TouchTestable
steps have been applied to your app and that the device agent is
associated with a mobile app. You can also click the help link in the box

to access documentation on this topic.
Pause Recording
You have the ability to pause at any moment during a recording to:
e View your app
e Eliminate unwanted actions
e Save time getting your app to a state where you want it to record actions
e Add more actions to a clip
e Correct locators in the middle of a clip
e Add more waits, outputs, or validations to an existing clip using touch locator
e Record screenshots to use in validations for all cases on a specific page
To pause at any moment, click the Pause Recording option.

@® ~ BB~ | Lst ~

ar Pause Recording

Stop Recording

24

Recording a Droidfish Scenario (Native)

DroidFish is a typical chess application with menu options, the board pieces and

settings, a clock for each player, and so forth.

cm s

A &oa=
Yy nr
i

There are a number of verification possibilities:

e Verify that buttons are present

e Verify start of game that 32 pieces are visible
e Verify move list updates

o Verify clock

e Verify check mate position

25

1. Perform some or all of the following menu actions on your mobile device to
get to the beginning of a game.

e Select and long press Game (3™ button from left at bottom of the chess
board), Goto Start of Game.

Go Back

Goto Start of Game

Goto Start of Variation

e Enter Game Mode, Select Two Players.

Select Game Mode

Analysis Mode
Edit/re-play Game
Play White

Play Black

Two Players

Computer vs Computer

26

2. Perform the following initial moves known as Fool's Mate:

e White pawn to F4
e Black pawn to E6

White: 1:54 Sockhich Black: 155

.
-'I
-—rf-
v

B e
m

13 Co
3 O3

27

White pawn to G4

Stockfish

o
ot
=
»
=
=
=

Black Queen to H4

28

White: 1:52 Stockfish

5. After reaching the checkmate position shown above, Select Game, Goto Start of

Game (e.g. using the 3 button from the left below the chess board).
Go Back

Goto Start of Game

Goto Start of Variation

29

While you perform the mobile app actions, the Clip Editor adds an app action to the
clip. The Info Window streams with the latest app action’s General tab shown as

actions are added.

fzl Untitied Test Clip

#* | B B/ X| ®-

al- & @ '
%
A= Ae=fio=—tl o A==t A==t Ae=hio=t AT =t
FER

%

g -

5=
=3
tap] tap] tap] tap] tap]

6. In the desktop browser, click the Record button to stop recording. The

recorded clip displays the recorded actions.
Recording a Zirco Browser Scenario (Hybrid)

Zirco Browser is an Android hybrid app, meaning that it renders a web page as all or
part of its functionality. With Zirco Browser running on the device as a result of
launching it from the Clip Editor, we will now navigate to the URL for the SOASTA
web site: http://www.soasta.com/

limdwesnmene gy

SCASTA

30

1. Perform the planned mobile app user interactions on your mobile device. For

each action you perform in the browser, TouchTest Web adds an action to the

clip.

For example, in our demo clip, which is used in the remainder of this hybrid

example, we tapped the following sequence:

a. Long press the Location field in Zirco Browser until the about:text is

selected
b. With the previous text selected, enter www.soasta.com
c. Hit the space bar so that the shortcut menu goes away
d. Tap the Go Button (the right arrow at the end of the Location field).
e. On SOASTA home, tap the Menu link.
f. Tap Solutions and then Mobile Performance testing on the sub-menu.
g. Click the SOASTA logo to return to home.
h. On the home page, tap Web performance testing.
i. Click the SOASTA logo to return to home a second time.

In the screenshot below, the Clip Editor is in Icon view and is also in Record mode

while connected to Zirco Browser.

[ELLb) (X (@) (il 14
| 1) 0] 1) 50

2. Once the relevant interactions have been recorded, click the Record button

again to stop the recording.

31

Adding an Interval Delay between Each Action (All Users)

In the following optional steps, we will add an interval delay to the test clip. This type

of delay will stretch out the time between all the recorded app actions.

Imposing delays, either using the Interval Delay setting or by inserting Delay clip
elements, can make the test more viewable during the editing phase, as well as during

test playback (when viewing the test as it plays is most desirable).

1. Click the Properties tab in the minimized sub-panel and then select the Clip tab
at the top of the pane (the Clip tab may already be visible if properties are

already open from the prior exercise).
2. In the Property Type list, click Clip Properties.

3. In the Clip Properties panel on the right, enter an Interval Delay in the given
field. For example, 2000 ms. Entering 2000 adds a two second gap between

each app action in the given test clip.

| MessagesiActions | Scripts | Clips | Properties | Selected: none | Resutts | [© 00:00:00.000 &0 |

Property Type Clip Properties
_g', Clip Custom Properties Path:
' roperties Owner: jgardnerifisoasta.com
&) Delays Last Modified: 08/24/2012 08:44 am
& Page Rescurce Settings Description:

Interval Delay: 2000

Click Save on the Clip Editor toolbar. When the Save Test Clip box appears, accept the

default name, which takes the form “clip for <Device Name> <Mobile App Name>.

32

Create a Composition (All Users)

With any test clip open in the Clip Editor, you are ready to create and play a simple,
new test composition using this test clip. These steps are applicable to both DroidFish

and Zirco Browser examples.

1. To create a new composition from your test clip, click the Use in Test
Composition drop-down in the upper-right corner of the Clip Editor toolbar,

and select Play in Test Composition (as shown below).

TIP: Take note of the Use in Test Composition commands and their purposes.

C'OUdTESt@ : jz Clip for So...wser-21 70
B | B X (®~ [P~ [~ 8-~ @

@ v |l Al
f Open in Test Compastion

B3] B3 B3] B3 B3) B3 st

o e Tapll WebGiek webGiick webGiick

The Droidfish clip is shown above; however, these steps apply equally to Zirco

Browser.
e Open in Test Composition

Choose Open in Test Composition to add this clip to a new draft composition
where additional composition parameters can be set in the Composition Editor,

Edit tab before proceeding to play.
e Play in Test Composition

Choose Play in Test Composition to add this clip to a new draft composition where
it will immediately be played in the Composition, Play tab before proceeding to

edit parameters or play.
e Debug in Test Composition

Choose Debug in Test Composition to add this clip to a new draft composition
where it can be debugged in the Composition, Debugging tab before proceeding

to edit parameters or play based on debug actions.

33

34

Playing a Composition

If you used Play in Test Composition as suggested above, then your test clip is added
to a new draft test composition, which opens in a new Composition Editor tab and
immediately begins to play. If you clicked Open in Test Composition, you have a few

more clicks to go.

e Ensure that the TouchTest Agent status is still “Connected” on the mobile

device.

e In the Composition Editor, click Play to run the test composition a

second time.

(el (@] (w]e] [(B][E][E][X]](]
Total Virtual Users: 1| Sequenced Band: Band 1
Clip for Soasta Demo Nexus 2

The Composition Editor’s Status Indicator changes to “Playing,” and the mobile app is

launched on the specified mobile device(s) precisely as it was recorded.

.

[/ edt (¥ Debug |) Pay { [Resuts | |%E v
| () Playing | status log...

—

While the test runs, the Composition Editor automatically switches to the Play tab, and

by default, the Result Details dashboard displays.

35

Result Details (Droidfish)

The Result Details dashboard helps to discover the cause of errors in your test, if any.

While play continues results are posted in the Composition Editor, Play tab, Result

Details widget.

In the show below, a DroidFish test plays in the Composition Editor, Play tab, Result
Details dashboard.

dl- (0 (>]m = Q- (B (&) [=-

Resutt Details Dashboard " | +

Result Detalls
Element Status Element Type Operation
All = /| Al 4 || Al *
¥ E% Composition for Clip for Soasta Demo Nexus DroidFish-6 [[[& | £y
¥ £ Band1
¥ |zl Clip for Soasta Demo Nexus DroidFish-8
(=) Soasta Demo Nexus DroidFish

Playing Total Components: 18 Total M and Actions: 10 Error Comp 0 Error Messages an

g App Action1
g App Action2 Band1 » Track1 » Clip for Soasta Demo Nexus
g App Actiond l
83 op Actons (Srmery AT
B App Actions
B Aop Actions General
B App Action? Operation: tap Name: A
3 App Actiong
Q AP Actiong Start Time Response Time CPU Usage Memory Usage
B Aop Actionto 20.829 sec. 928 ms. 13% 541 MB
Waits And Validations [Z7] Gustom P

buitin-waitForGestureComplete: Passed

Input [Z7] Output

36

Once play completes, the final results are displayed in the Results tab (also in the
Result Details widget). If the test passed on all points, the status “Completed — With
No Errors” is clearly posted in the Result Details dashboard.

Result Details

Eloment Status Eloment Typa Operation
Al s LAl s Al

¥ B Composition for Clp for Soasta Demo Nexus DroidFisn€ | [|/ Completed - With No Efrors | Total Components: 18 Total Messages and Actions: 13 Error Components: 0
¥ £ Band1

v W Track 1

¥ |y Clip for Soasta Demo Nexus DroidFish-6
(=) Soasta Demo Nexus DroidFish

App Actiont
App Action2 ‘Composition for Clip for Soasta Demo Nexus DroidFish-6
App Actiond P »
App Actions
App Actions General
App Action? Name: Composition for TouchTestAndroidTutorial
App Actions
App Action8 Status Effective Duration Avg. Response Time Total Message Bytes Effective Message Throughput
App Action1o Completed 46 sec. 1.248 sec. Sent: 0 0 msgs/sec.
= Composition i -
App Action11 completed. Received: 0
App Action13 Thu Oct 17 Min: 873 ms Agg: 16 sec. Max number of 0 bytes/s
) Start: 08:28:26 Max: 2.854 sec. threads used : 2 Dlbhele
4pp Actontd PDT 2013
Thu Oct 17
End: 08:30:14
PDT 2013
Custom Properties &)
No property changes
© Monitored Device(s)
emo atte es Sen eceive
CPU M Batt B Sent & R d

33% 529MB 100% 9KB

25% 525MB 5% 2KB

17% 522MB 50% 3.4KB

. . - - o jli '”' j]llli
2% 516MB 0% oke W [\

The mobile app actions performed when the clip was created are played back on the

device. Click to expand the nodes in the Navigation Tree on the left as they appear.

Result Details uses a Cover Flow (top panel to the right) to display the test
composition’s stream as it occurs.

(| VV Completed - With No Errors Total Components: 18 Total Messages and Actions: 13 Error Components: 0

Band1 » Track1 » Clip for Soasta Demo Nexus DroidFish-6 » App Action6

37

This stream is also shown in the Navigation Tree (on the left) as elements are
executed. As play continues, the focus is set to the last executed element unless user
interaction prevents it. The current container is expanded while the prior containers

are closed.

Clicking an element during play will halt this auto-focus-to-the-last-executed behavior.
To resume auto-focus once interrupted, click Jump to Now in the upper right of the
dashboard.

o Click any object in the Cover Flow at the top to center it and display its details

and play statistics in the panes below.

@~ (@[> | @~ (B [E] [~

Fesult Detais Dashboard ™ | +

Result Details

Elemant Status Element Typa Operation
Al s | Al s || Al 3

¥ £ Compesition for Clip for Seasta Deme Nexus DroidFish-€ | [‘tf Completed - With No Errors Total Components: 16 Total Messages and Actions: 18 Error Components: 0 Errgl
¥ £ Band 1
¥ |z Clip for Soasta Demo Nexus DroidFish-6
{2) Soasta Demo Nexus DroidFish
App Action1

App Action2 Band1 » Tracki e Clip for Soasta Demo Nexus DroidFish-6
App Actiond -
App Action5
g App Actions General
B App Action? Operation: tap Name: App Action
B App Actions
Q App Actiong Start Time Response Time CPU Usage Memaory Usage Battery
B 40 Actonto 38.271 sec. 986 ms. 38% 497 MB 100%
Q App Action11 —
Q Waits And Validations |55l Custom Properties

App Action13 o
B3 4pp nctionia waitForViewChange: Passed

Input [Z5 Output

Name: | Locator

Vale: | text=Goto Start of Game

o Use the scrollbar to browse the flow. Select any item to show its low-level

details.

38

Result Details (Zirco Browser)
The Result Details dashboard helps to discover the cause of errors in your test, if any.

While play continues results are posted in the Composition Editor, Play tab, Result

Details widget.

In the shot below, a Zirco Browser test plays in the Composition Editor, Play tab,

Result Details dashboard.

Result Detalls
Elamant Status Elament Typa Operation
+ Al s || Al

ES Composition for Glip for Soasta Demo Nexus Zirco Brow [E £ Playlng Total Components: 5 Total Messages and Actions: 2 Error Components: 0 Error Messages and Actions: 0

¥ £ Band 1

¥ W Track1 5 PADRIAGE]
¥ |y Clip for Soasta Demo Nexus Zirco Browser-12]
A& \
Rl

() Soasta Demo Nexus Zirco Browser

& App Actiont
& App Action2 Band1 » Track1 e Clip for Soasta Demo Nexus Zirco Browser-12 » App Action2

General

Cperation: type Name: App Action2

Start Time Response Time CPU Usage Memory Usage Battery Status Byted

8.839 sec. 3.205 sec. No Data No Data No Data No
Waits And Validations [E5l Custom Properties

waitForViewChange: Passed m

prope

Input [iF] Output

Name: | Locator

Value: | Id=UriText

Name: | Text

Value: | www

39

Once play completes, the final results are displayed in the Results tab (also in the
Result Details widget). If the test passed on all points, the status “Completed — With

No Errors” is clearly posted in the Result Details dashboard.

Result Detalls
[Element Status: [1+ | [All

:| | ElementType: [1s ¢ | [Al :]| | Operation:[1s : | [Al :

£ Band 1
¥ N Track 1
7 @ Clip for Soasta Demo Nexus Zirco Browser-3
(&) Soasta Demo Nexus Zirco Browser
2 App Actiont
&' App Action2
J#F App Actiond
& App Actiond
& App Actions
#¢ App Actiong
&1 App Action?
& App Action8
&1 App Actions
& App Action10.
L&t App Action11
&2 App Action12
&1 App Action13
&2 App Action14.
&' App Action15
¢ App Action16
& App Action17
& App Action18.
%1 App Action13
&1 App Action20
& App Action21
&1 App Action22

7 B2 Composition for Clip for Soasta Demo Nexus Zirco Brows +” Completed - With No Errors

Total Components: 25 Total Messages and Actions: 22 Error Components: 0 Error Messages and Actions: 0 i Jump o ne
A A A A AAAAAAA A A = fAppiAct

il

11 \ \ W1\ W1\ \ \ j

1] ‘ Ml A Ml AR M A B AR NS A M RE 88 ME RS \

Band1 » Track1 » Clip for Soasta Demo Nexus Zirco Browser-3 » App Action22
-«
General
Operation: webClick Name: App Action22
Start Time Response Time CPU Usage Memory Usage Battery Status Bytes Received Bytes Sent
42,656 sec. 296 ms. No Data No Data No Data No Data No Data
Waits And Validations [{}] Custom Properties
No waits or validations No property changes
Input [Z Output
Name: | Locator
This action has no output
Value: |Mi[@id="menu-item-463972)a

7 Monitored Device(s)
CPU Memory Battery Bytes Sent & Received

100% 100MB 100% 1008

75% 75ME 75% 758

5o No Data some No Data 0% No Data o8 No Data

25% 25MB 25% 258

0% OME 0% 08

M sent M Received

The mobile app actions performed when the clip was created are played back on the

device. Click to expand the nodes in the Navigation Tree on the left as they appear.

Result Details uses a Cover Flow (top panel to the right) to display the test

composition’s stream as it occurs.

.' «# Completed - With No Errors

B 44

Band1 » Track1 » Clip for Soasta Demo Nexus

Total Components: 25

Total Messages and Actlons:

DAY
gb

pwve

This stream is also shown in the Navigation Tree (on the left) as elements are

executed. As play continues, the focus is set to the last executed element unless user

interaction prevents it. The current container is expanded while the prior containers

are closed.

40

Clicking an element during play will halt this auto-focus-to-the-last-executed behavior.
To resume auto-focus once interrupted, click Jump to Now in the upper right of the
dashboard.

o Click any object in the Cover Flow at the top to center it and display its details
and play statistics in the panes below. For example, in the shot below, App
Action11 is selected in the Cover Flow and its details are in display in the lower

panels.

Q/ Completed - With No Errors Total Components: 25 Total Messages and Actions: 22 Error Components: 0 Error Messages and Actions: 0

[GRERRERREENC ypRsIn A 0007

Band1 » Track1 B Clipfor Soasta Demo Nexus Zirco Browser-3 b App Action11

General
operation: webClick Hame: App Action11
Start Time Response Time CPU Usage Memory Usage Battery Status Bytes Received Bytes Sent
27.791 sec. 293 ms. No Data No Data No Data No Data No Data
Waits And Validations [55] Custom Properties 3
No waits or validations No property changes
Input [55] Output 5

Name: | Locator

Value: |/divi@id=linner-headerynavidiv[1yspan

o Use the scrollbar to browse the flow. Select any item to show its low-level

details.

41

Identifying and Analyzing Common Errors

Despite the successful results above, in some cases your test may not succeed initially.

As test advocates, we are often more interested in such failures.

(5] 5¢ completed - With Errors = Total Components: §

The way we approach them is first to identify where they occurred and then to

analyze what occurred.
Network or Communication Errors

Initial errors in a simple test like the one above are most often only simple network or

configuration errors having to do with test staging.

For example, if the Device Agent is not connected or is not responding the
Composition Editor's Status Indicator will indicate “Test Composition failed” (shown

below).

[¥ Edit { % Debug ' () Play | [Resuts
_— A —

| QT&SI Composition failed details... | status log... |

e Click Details to display additional information in a dialog box.

Composition-wide errors such as these are clearly indicated in the General section in
the initial view of Result Details. They frequently are related the state of the Device

Agent (e.g. if the device agent is not connected when you click Play).

In some cases, the TouchTest Agent may have been started but is no longer
responding (or the device auto-lock may have been invoked). In such cases Logout

and re-login, or wake up the device if it is in auto-lock mode.
App Action and Other Errors (All Users)

TouchTest reports all failures and marks test successful or unsuccessful by the Failure
Actions set within it. Failure Actions are set stringently by default to fail the test for

any error and to show that failure in red.

42

Result Details clearly indicates the type of test failure that has occurred in a given
case. The red "X" in the Result Details dashboard easily distinguishes failures on

specific app actions you recorded.

In the remainder of this tutorial advanced editing and test analysis is shown separately
for Droidfish (Native) and Zirco Browser (Hybrid), we will add outputs, and then verify,
or validate, that an app action’s value matches what we expect to find. This validation

becomes the basis of creating real-world functional tests.

43

Advanced Clip Editing (Droidfish)

Now that we've played this simple Droidfish test composition successfully, and learned
how TouchTest will check the success or failure of a given composition, let's return to

the test clip to inspect the clip elements and do some additional parameterization.

» C(Click the Clip Editor tab if it's still open, or right-click the test clip in the

Composition Editor and choose Open in New Tab.

» Once the Clip Editor tab is in view, click the drop down Icon/List button on the

toolbar and then select List.

The List view is useful while clip editing, because it shows all the parameters and their

corresponding inputs in one tabular view.

C'DLIdTESt[E' [z Ciip for So...cidFish-8" ¥ B8 Draft Compaosition
a - (@ 8 W | & F R B X @F | ity (B (@~

.l | Mame | Operation | Parameter 1

=2 E App Action tap id=undoButton

= E App Action2 tap text=Goto Start of Game

== E App Actiond tap id=modeButton

=3 E App Actiond tap text=Two Players

= ﬂ App Actions tap id=chessboard

=2 E App Actiong tap id=chessboard

=3 E App Action? tap id=chessboard

= ﬂ App Actiong tap id=chessboard

== E App Actiong tap id=chessboard

=3 E App Action1D tap id=chessboard

=2 E App Action11 tap id=chessboard

= E App Action13 tap id=undoButton

=5 E App Action14 tap text=Goto Start of Game

44

When additional parameters are present they are displayed to the right of the

Parameter 1 column.

Parameter 2 | | | Target Name

{“tapCount":"1"...uration":"1.18"} Soasta Demo Nexus DroidFish

{"tapCount™:"1"...ration":"0.L173"} Soasta Demo Mexus DroidFish
{"tapCount”:"1"...ration":"2.118"} Soasta Demo Mexus DroidFish
{"tapCount™:"1"...ration":"0.L 168"} Soasta Demo Mexus DroidFish
{"tapCount™:"1"...ration":"0L 187"} Soasta Demo Mexus DroidFish
{"tapCount”:"1"...ration":"0. 102"} Soasta Demo Nexus DroidFish
{"tapCount™:"1"...uration™."0.24"} Soasta Demo Mexus DroidFish
{“tapCount”:"1"...uration":"0.12"} Soasta Demo Mexus DroidFish
{"tapCount™:"1"...ration":"0. 153"} Soasta Demo Mexus DroidFish
{“tapCount":"1"...ration”:"0.138"} Soasta Demo Nexus DroidFish
{"tapCount™:"1"...ration":"0.153"} Soasta Demo Mexus DroidFish

{"tapCount”:"1"...ration":"1.018"} Soasta Demo Nexus DroidFish

FDEDRPDRERDRERRDRDRPDRDRDRCDPLDRMWE

{"tapCount”:"1"...uration";"0.22"} Soasta Demo Nexus DroidFish

Inspecting App Action Details (Droidfish)

Examine elements and properties for any App Action by selecting it in the workspace
above and then click its Gear icon to Show Info. When you do so, the Info Window

appears.

In the test clip below the recorded AppAction2 is open in the lower panel. The type of
app action, type represents the user name entered on the SOASTA Demo app login
page.

e Locate App Action5 and expand it by clicking the arrow. Note that when
you hover the mouse over the expanded app action the Add toolbar
appears on the expanded row. This toolbar shows icons for Pre-Action
Waits, Post-Action Waits, Outputs, Validations, and Property Sets. Any click

on one of these will add the relevant form to the given app action.

b= App Actiond tap text=Two Players {
7 E App Action5 tap Add: 3o o [B ﬁﬂ
e l‘.%EI tap id=chessboard
- @3 buill n-watForGestureComplete Timeout Action: Fail the parent
=3 E App Actiond tap id=chessboard

45

4. Expand the tap action (if not already expanded) to inspect the Inputs of this

action.
'l g App ActionS tap
¥ & tap
Locator | id=chessboard - EPE
tapCount | 1 | J]
touchCount | 1 @ £
duration | 0.187 @ £
tapOffset | 475,647 B E
= ﬂ App Actiont tap id=chessboard
[ﬂ App Action? tap id=chessboard
= g App Actiong tap id=chessboard

Because all the moves in DroidFish use the /d-chessboard in this example, this means
that although the test plays successfully (even though the tapOffset values distinguish

one from another) this doesn't result in a very helpful test in terms of human

readability.
App Action Properties (Droidfish)

Additional parameters, such as Custom Properties, can be set by double-clicking an

app action to open it in the Clip Editor lower panel. Action level properties are shown

in the tree on the left.
1. Select the top-level node in the tree (as shown below)

e General, Repeat, and Custom Properties (for the action only; not for the entire

clip) tabs appear on the right.

46

e Note that Error Handling here is set to Errors should fail the parent by default.

=3 E App Actiond tap

Messages/Actions / Scripts /| Clips /

Properties /

id=chessboard

Selected: App Action5

Y| Inputs
l@l Locator
| Tap Count
l@l Touch Count
5| Duration
l@l Tap Offset
7 3 Waits
¥ 3 Pre-nction Waits
v ..)3 Post-Action Waits
7| Outputs
V& Validations
V'S¢ Property Sets

{"tapCount":"1"...ration":"0.197"} &

@ 00:00:00.000 @0

Results

Repeat

Action: tap

Name App Action5

Description

Target And Action

Target | Soasta Demo Nexus DroidFish |
Action |tap |

Error Handling

Errors should: | fail the parent

Custom Properties

e Other settings, including Waits, Inputs, Outputs, Validations, and Property Sets

that were seen in the expanded list view steps above can also be set in the

lower panel by clicking that node in the tree and then performing the desired

action on the right.

1. In the Selected: App Action5 tab (or for any selected app action), familiarize

yourself with the available elements and properties.

e %7 Inputs (Locator, Scale, Precision, Content Offset)

Locators are unique characteristics that identify a specific element or object

on a mobile device. Locators come in many forms, including links, IDs such

as those defined within CSS, and XPath expressions.

. . . : . .o d
° m Waits (Pre-Action Waits :L’ Post-Action Waits "=)

Waits are commands that tell TouchTest not to execute an Action until a

condition is met (pre-action waits), or to not continue processing the

47

outputs, validations and property sets of the Action until a condition is met

(post-action waits).

- 4 Outputs

Outputs specify what is to be shown in the Result Viewer for a given Action.
Typical outputs include captureScreenshot, outputElementiext, and
outputinnerHTML. A single Action can have an unlimited number of outputs,

however, as a general rule they are used sparingly.

« Validations

Validations verify some event occurred as expected and have a
corresponding Failure Action. App Action validations can range from simple
true/false conditions to more complex conditions. A single App Action can
have an unlimited number of validations. Any validation failures will be

exposed in the Results Dashboard.

XTE

%= Property Sets

Property Sets give you the ability to take text or data from the app you are
testing and store it in a custom property for use in a subsequent action or

message.

SOASTA TouchTest includes three property sets, all of which have relevance

for refining and editing a selected App Action.
o Custom Properties

Custom Properties are user-defined properties that are available to all
clip elements, including Actions. Custom properties can be thought of as

backdoors that allow access to portions of the object model more easily.

o System Properties

48

System Properties are available to all clip elements, including Actions.
SOASTA TouchTest defines system properties. For example, a test clip has

system properties such as name, repeat timing, label, and more.
o Global Properties

Global properties are defined within the Central > Global Properties List
and are "global” within the entire SOASTA TouchTest environment—and

can be used across compositions.
Adding Outputs (Droidfish)

In the following steps, we will add an output to an App Action in the test clip we
created above. This output will capture a screenshot of the test clip element as it is

executed during runtime and this screenshot will be integrated into the test results.

Additionally, we will add an output of the View Hierarchy in order to learn more about
interesting things to validate. If you're a developer, you may already know many such
things, however, if you're a tester who is not as familiar with an app’s code base, this

output is very useful.

1. Expand App Action5 in the Clip Editor, List view.

°3 App Actiond tap text=Two Players

7 B App Actions tap vt B BB B
b = tap id=chessboard
- -.;,E buill n-watForGestureComplete Timeout Action: Fail the parent

=3 E App Actiond tap id=chessboard

2. While hovering over this action, click the Outputs icon (fourth icon from the
left) on the Add toolbar.

7 App Actions tap add: e o [o ﬁi*
b = tap id=chessboard
v [

Name | captureScreenshot

Command | captureScreenshot

Locator {optional) - [=]

49

An Output form is added to the action with the default output, captureScreenshot

shown. Leave the default captureScreenshot selected.

IR AU - ;

Outputs

Command: captureScreenshot = & X

|| Only if there is an error

e Leave Only if there is an error unchecked to get a screenshot in every

eventuality.

3. Click the Output icon on the Add toolbar a second time. A second form is

added to the panel.

4. In the second output, click the Command drop down and select

outputViewHierarchy. Leave the Locator field blank to get the entire view.

v =
Name outputViewHisrarchy
Command = outputViswHigrarchy
Locator (optional) = g J_|

5. Click Save on the Clip Editor toolbar.

6. Return to the Composition Editor tab once again and click Play a second time.

50

Inspecting Outputs (Droidfish)

1. In the Result Details dashboard, select the App Action5 in the navigation tree

or in the cover flow, locate the Outputs panel, and click its Maximize icon.

Output

Name: | captureScreenshot

Locator (optional):

fish Black: 2:00|

G B A&
411

Nlér

Zae
411

D it

Add Validation

2. Scroll down in the Output panel to view the result for outputViewHierarchy.

Look for interesting things to validate.

3. Optionally, copy the content of outputViewHierarchy for DroidFish and paste it

into a separate text file.

51

This output can provide many text elements for validations that are of great use to

a tester unfamiliar with an app's code base.

Output 8

Mame: | outputViewHierarchy |

Command: | output-viewHierarchy |

Locator: | |

<com.android.internal. policy impl. PhoneWindowSDecorView:
com.andreid internal. policy.impl PhoneWindewSDecorView@4 107c770; frame = {{0, 0}, {800, 444}}; alpha = 1.0; cpague = true>

| =android.widget. LinearLayout: android.widget.LinearLayout@4107d408; frame = {{0, 0}, {800, 444}}; alpha = 1.0; opaque =
false>

| | <=android.view.ViewStub: android.view.\ViewStubi@4 107eTd0; frame = {{0, 0}, {0, 0}}; alpha = 1.0; opague = false>

| | =android.widget. FramelLayout: android. widget. FrameLayout@4107eb78; frame = {{0, 0}, {800, 19}}; alpha = 1.0, cpague =
true=

| | |=android.widget LinearLayout: android.widget. LinearLayouti@410e1320; frame = {{5, 1}, {790, 15}}; alpha = 1.0; cpaque
=false>

| | | |=android.widget TextView: android widget. Text\iew @ 10e1648; frame = {{0, 0}, {264, 15}}; alpha = 1.0; opague =
false,; text = "White: 1:55"

| | | |<=android.widget TextView: android widget. Text\View(d410e1af8; frame = {{264, 0}, {263, 15}}; alpha = 1.0; cpague =
false; text = "Stockfish'>

| | | |<=android.widget TextView: android widget. Text\View(@4 10e1fa8; frame = {{527, 0}, {263, 15}}; alpha = 1.0; opaque =
false; text = "Black: 1:57>

| | <=android.widget. FramelLayout: android. widget. FramelLayout@4 1080920, frame = {{0, 19}, {800, 425}}, alpha = 1.0; cpague
=false>

T e 1 s diericl vasicl et | 1 b/ A o PWTWIRWD £ IOf 00 FONWY ATENY: minke = d 0%

52

Add an Image Validation (Droidfish)

1. Click the Validation button beneath the captured screenshot in the Output

panel.

Output

Eadtlido AR
'FY Y FY O

Add Validation

2. When you do so, focus returns to the Clip Editor and a verifyScreenshot is

added to the given action (in this case, App Action5).

3. Specify a tolerance of 90 (as a percentage of image variation). If this fails when

you play the test composition, try setting it to 80, and so forth.

In this case, accept the default Failure action for this validation.
4. Save the test clip.

5. In the Composition Editor, click Play once again.

53

Add a Text Validation (Droidfish)

Since the test clip is already open, let's also add a text validation to the same action

(App Action5). This time we will use the lower panel to do so. Ensure that your mobile

device is connected and running TouchTest Agent before proceeding with the

following steps.
1. Double click App Action5 to open it in the lower panel.
2. Locate Validations in the tree on the left.

3. Click the green Plus (+) icon on the previously added form (the

verifyScreenshot we added above).

4. Change the Command drop-down on the new validation form to

verifyElementText.

5. Click the Record button (since Droidfish text mainly appears in the console

area, we need to get the console locator).

6. Invoke Touch Locator mode by clicking the first icon to the right of the Locator

field (shown below).

TIP: For more about the Touch Locator feature, see Touch Locator for Mobile

Apps.
Action: tap

Command: verifyElementText H &+ X

Locator: S
G
Exact Match | & 5 A:|
Errors should: be recorded only

Customize result success/arror Messages

7. On the Android device, long press the text "1. White's move" until the blue

border is constrained to that field.

54

http://cloudlink.soasta.com/t5/Knowledge-Base/Touch-Locator-for-Mobile-Apps/ba-p/6652
http://cloudlink.soasta.com/t5/Knowledge-Base/Touch-Locator-for-Mobile-Apps/ba-p/6652

8. When you do so, the Touch Locator box appears with the available locators.

TextView

id=status

text=1. White's move

classname=TextView[3]

//DecorView/Linea..arLayout/TextView

9. Click the Up Arrow icon to accept these locators and then click Record in the
Clip Editor to stop the session. Before proceeding, delete any out-of-sequence
app actions that you inadvertently recorded while in Touch Locator mode (e.g.
since App Action5 was selected here, delete anything between it and App
Action6).

10. In the Clip Editor, inspect the verifyElementText form in App Actionb5.

Action: tap
Command: | verityElementText . Lt
Locator: id=status - D |§| D
Exact Match | 4 White's move EPE
Errors should: be recorded only E
Customize result success/error messages

The locator field is now populated with the locator of the field whose text we want to
verify. Optionally, click the Locator drop-down and note that all of the locators that
appeared on the device for the given field have been populated but only the first is
used. Should the validation fail, you can try one of the other locators. Also, note that
we didn't change the locator for the app action itself but rather added a locator to

verifyElementText solely.

55

11. In the Match field, leave Exact Match set and enter 1. White's move.

Action: tap
Command: | yerifyElementText &+ K
Locator: id=status - @ D
Exact Match | 3 1. White's move =) D
Errors should: | e recorded only :
Customize result success/error messages
TIP: You can also verify on partial strings using regex or glob. Refer to

Validations for Browser or App Actions for more about matching.

12.Save the test clip.

13.1n the Composition Editor, click Play once again.

56

http://cloudlink.soasta.com/t5/Knowledge-Base/Validations-for-Browser-or-App-Actions/ba-p/98

Analyzing Validations in Results (Droidfish)

Now that we've added validations on an image and text, we will learn how to examine
those validations on their merits. In the best-case scenario, the parameters added in
Advanced Clip Editing work without a hitch. We can easily verify the status of our

parameters in Result Details.

Result Details
Elemant Status Element Type Operation
Al Al <Al .
¥ E& Draft of Composition for TouchTestAndroidTutorial create | [T Q/ Completed - With No Errors Total Comp 1 Total M ges and Actions: 1 Error Componen
7 £ Band1
¥ WL Track 1

¥ |zl Clip for Soasta Demo Nexus DroidFish-8&
(=) Soasta Demo Nexus DroidFish

g App Action!
g App Action2 Band1 » Track1 » Clipfor Soasta Demo Nexus Drg
g App Actiond ™l
e == o
App Action§ General
g App Action? . . :
Operation: tap Name: ApPpP

B3 App Actions
Q App Action® Start Time Response Time CPU Usage Memory Usage
B Ao Actonto 17.812 sec. 926 ms. 20% 613 MB
g App Action1 -

Waits And Validations |77] Custom Propq
EX App Action13
B3 App Action14 verifyScreenshot: Passed

verifyElementText: Passed

Input [Z5 Output

Validations
Name: | Locator

Value: | id=chessboard

Lo
Mame: | Tap Count

Value: |-_'"tap-Count":"|"."touchCount""'|"."duration":".'J.I9?"."tap0ﬁset"1

1. In Result Details, select the clip element that had the validation. For example,

App Action5 (as shown above and below).

57

TR | Surmary |
2 AepAcions ||

ﬁ App Actiond General

B rpp Acton? Operation: tap

B} App Actions

g App Actiong Start Time Response Time CPU Usage Memory Usag)

B App Actionto 17.812 sec. 926 ms. 20% 613 MB

g App Action11 -
Waits And Validations &

B3 App Action13

g App Action14 verifyScreenshot: Passed

verifyElementText: Passed

Input [zl

Name: | Locator

Value: | id=chessboard

Name: |Tap Count

Value: | {"tapCount":"1","touchCount":"1","duration":"0.1 9?"."tapoﬁset"1

2. Inspect the information on the Summary tab for the selection. In the result

above, the validation on App Action5 passed in the result shown.

3. Click verifyScreenshot in the Waits and Validations section to bring it into focus

in the Output section.

Waits And Validations [i5| Custom Properties [
verifyScreenshot: Passed
builtin-waitForGesturaToComplete: Passed No mrty d‘m
Input [E5 Output [
Name: | verifyScreenshot
Name: | Locator
Command: | putput-captureScreenshot
Value:
alue Tolerance (%)
=

Note: Since we didn't check Only if there is an errorin the Output form a shot

of the success is included in this result for the given app action.

4. Click the Events list tab for the given selection to view action-related events,

including validations. Click the Details arrow to inspect any event's details.

58

5. Click the Output section's Maximize icon to view the results for the

verifyScreenshot and verifyElementText on this action in full.

Click between the Expected and Observed tabs to see the comparison images.

Output =]
Name: | verifyScreenshot
Command: | output-captureScreenshot

Tolerance (%):

e In this case the verifyScreenshot passed. If yours didn't pass, try lowering the

tolerance (from 90 to 80 and beyond).

e In this case, the verifyElementText also passed.

Name: | wverifyElementText

Command: | output-elementText

Locator: | id=status

|
|
Expected: | 1. White's move |
|

Observed: | 1. White's move

6. Click the Events List tab in the middle panel of Result Details to view the
complete text stream of events for the given selection. Note the validation

relevant headings.

59

31

33

35

a7

39

40

Time

17811

17812

20998

20998

21343

21345

21345

21348

21348

213486

Level

Info

Verbose

Verbose

Info

Verbose

Info

Info

Verbose

Info

Info

Event Code

App Action: send

Transport: appbeg

Transport: append

Validation: vstart

Validation: vepass

Validation: vpass

Walidation: vstart

Validation: vepass

Validation: vpass

App Action: sent

Description

Performing App Action.

Band: "Band 1" Track: "Track 1" Clip: "Clip for Soasta Demo Nexus DroidFish-8" Target:

“Soasta Demo Nexus DroidFish”

Performing App Action "App Action5" for Destination "Soasta Demo Nexus DroidFish", operation "tap".

Band: "Band 1" Track: “Track 1" Clip: “Clip for Soasta Demo Nexus DroidFish-6" Target:

P Details:
App Action "App Action5" completed.

Band: "Band 1" Track: "Track 1" Clip: "Clip for Scasta Demo Nexus DroidFish-8" Target:

¥ Details:
Starting validation "verifyScreenshot".

Band: "Band 1" Track: "Track 1" Clip: "Clip for Soasta Demo Nexus DroidFish-8" Target:

Validation of response body passed.

Band: "Band 1" Track: "Track 1" Clip: "Clip for Soasta Demo Nexus DroidFish-8" Target:

P Details:
Validation verifyScreenshot passed.

Band: "Band 1" Track: "Track 1" Clip: "Clip for Scasta Demo Nexus DroidFish-8" Target:

Starting validation "verifyElementText".

Band: "Band 1" Track: "Track 1" Clip: "Clip for Soasta Demo Nexus DroidFish-8" Target:

Validation of response body passed.

Band: "Band 1" Track: "Track 1" Clip: "Clip for Scasta Demo Nexus DroidFish-8" Target:

¥ Details:
Validation verifyElementText passed.

Band: "Band 1" Track: "Track 1" Clip: "Clip for Soasta Demo Nexus DroidFish-8" Target:

App Action completed.

“Soasta Demo Nexus DroidFish”

"Soasta Demo Nexus DroidFish"

“Soasta Demo Nexus DroidFish”

“Soasta Demo Mexus DroidFish”

"Soasta Demo Nexus DroidFish"

“Soasta Demo Nexus DroidFish”

"Soasta Demo MNexus DroidFish"

“Soasta Demo Nexus DroidFish”

60

Advanced Clip Editing (Zirco Browser)

Now that we've played this simple Zirco Browser test composition successfully, and
learned how TouchTest will check the success or failure of a given composition, let's
return to the test clip to inspect the clip elements and do some additional

parameterization.

» C(Click the Clip Editor tab if it's still open, or right-click the test clip in the

Composition Editor and choose Open in New Tab.

= Once the Clip Editor tab is in view, click the drop down Icon/List button on the

toolbar and then select List.

D) @ (=) e ()
B

%) 8

lcon 5
‘Wb CK ‘wab(CK wabClick

The List view is useful while clip editing, because it shows all the parameters and their

corresponding inputs in one tabular view.

61

Collapse and expand the App Action to access or hide its details; hover the mouse
over a row to display the Add toolbar, which is used to add Pre- and Post-Action
Waits, Outputs, Validations, and Property Sets. The expanded action consists of the

action inputs, built-in waits associated with the action, and any accessors manually

added by the user via the Add toolbar (or, via the lower panel Action Editor).

.l | Mame | Operation | Parametar 1
¥ &' App Action1 tap
¥ & tap
Locator | id=UrfText - B £
tapCount | 1 B E
touchGount | 1 FEWE
duration | 1.085 @ £
tapOffset | 62,32 @ £
b '433 buittln-waitForGestureComplete Timeout Action: Fail the parent
¥ & App Action2 type
¥ & type
Locator | id=UrText - 5
Text | www.soasta.com 5 D
v =K
Name waitForViewChange
Command | waitForViewChange
Timeout Action: | Fail the parent
¥ & App Actiond tap add: e o [B &
b & tap id=UrText
g '433 buitln-waitForGestureComplete Timeout Action: Fail the parent

For a collapsed row, additional information is also displayed to the right of the

Parameter 1 column.

| Parametar 2

WL, s0asta.com

&

{"duration™™ "touchCount™ ™ "tapOffset” "457 25" "tapCount™™}

{tapOffset™:"[[0,0,2,178354,0,0,0,0,1,40...101.82337 10182337 557.5283 52, 55588][]]"}

EEEELE RS

62

Inspecting App Action Details (Zirco Browser)

Examine elements and properties for any App Action in the workspace by expanding.

When you do so, the Info Window appears.

In the test clip below the recorded App Action4 is expanded to show its details. The
type of app action, webClick, represents the first action in the clip that renders a web
page. This is the archetypal "hybrid" app action. In some cases, its parameter is an
Xpath (just as it would be for a browser action in a desktop functional test). In other

cases, a classname or even a TouchTestID will appear here.

e Locate App Action7 and click its Gear icon to pop out the Info Window.

¥ & App Actions webClick Hdiv[@id="logo')/a
¥ @ webClick
Locator | //div[@id="logo')/a hd I@I A:|
tapCount | 1 I@I J:|
touchGount | 1 I@I J:|
duration | 125.0 R E|
tapOffset | 126,22 S|

5. Expand the webClick under App Action4. Its locator is an Xpath representing
the SOASTA Logo.

¥ % App Actiond webClick
¥ = webClick
Locator | //div[&id="logo')/a - IEI ,_J:|
tapCount | 1 B £
touchCount | 1 B £
duration | 125.0 B £
tapOfset | 126,22 B £

63

App Action Properties (Zirco Browser)

Additional parameters, such as Custom Properties, can be set by double-clicking an
app action to open it in the Clip Editor lower panel. Action level properties are shown

in the tree on the left.
2. Select the top-level node in the tree (as shown below)

e General, Repeat, and Custom Properties (for the action only; not for the entire
clip) tabs appear on the right. Note that Error Handling here is set to £rrors

should fail the parent by default.

| MessagesiActions | Scripts | Clips | Properties | Selected: App Action? | Resuls | C] ©00:00:00.000 @0

[General Repeat Custom Properties
4= App Action? Name App ActionT
V&l Inputs
'@I Locator
'7% Waits Description

T T Pre-Action Waits
T« Post-Action Waits
-7Eﬁ Outputs
¥+ \alidations Target And Action
V'EE Property Sets

Target | Soasta Demo Nexus Zirco Browser |
Action [webGClick |

Error Handling

Frrors should: fail the narent

e Other settings, including Waits, Inputs, Outputs, Validations, and Property Sets
that were seen in the expanded list view steps above can also be set in the
lower panel by clicking that node in the tree and then performing the desired

action on the right.
Adding Outputs (Zirco Browser)

In the following steps, we will add an output to an App Action in the test clip we
created above. This output will capture a screenshot of the test clip element as it is

executed during runtime and this screenshot will be integrated into the test results.

Additionally, we will add an output of the View Hierarchy in order to learn more about

interesting things to validate. If you're a developer, you may already know many such

64

things, however, if you're a tester who is not as familiar with an app’s code base, this
output is very useful.

1. Click the Add toolbar, Outputs icon for App Action1 to add the new output.

2. Select outputViewHierarchy in the Command drop down.

¥ & App Actionl tap
= = tap id=UrText
| 03 buitin-waitForGestureComp lete Timeout Action: Fail the parent
v [

MName | outputViswHierarchy

Command | outputViewHierarchy

Locator {optional -) £

3. Leave the Locator field blank. This will return the entire hierarchy.

4. Optionally, also add an outputXMLHierarchy on App Action1.

5. Click the Add toolbar, Outputs icon for App Action4 to add an output.

6. Leave the default, captureScreenshot, set on App Action4.

¥ & App Actiond webClick
¥ & webClick
Locator | //div[@id="logo')/a - Iq‘}l [
tapCount | 1) J]
touchCount | 1 B ,_D
duration | 125.0 =) f=
tapOffset | 128,22) f=
T [
MName captureScreenshot
Command = captureScreenshot
Locator (optional) -)| D

e Leave Only if there is an error unchecked to get a screenshot in every
eventuality.

7. Optionally, also add an outputWebHtm/Source on App Action4. This will

provide a resource for interesting text to validate.

65

¥ & App Actiond webClick
b & webClick fdiv[&id="loga')/a
b |8 captureScreenshot
v =
MName @ outputWebHtmiSource

Command = outputWebHtmiSource

8. Click Save on the Clip Editor toolbar.

9. Return to the Composition Editor tab once again and click Play a second time.

66

Inspecting Outputs (Zirco Browser)

Now that we've added outputs to our Zirco Browser clip, let's check the Result Details
dashboard for them.

4. In the Result Details dashboard, select the App Action1 in the navigation tree

or in the cover flow, locate the Outputs panel, and click its Maximize icon.

Output =

Outputs

Name: | outputViewHierarchy

Command: | output-viewHierarchy |

Locator {optional): | |

<com.android.internal.policy.impl.PhoneWind owSDecorView:

com.android.inter rﬂl |:u:.| impl.PhaneWind ow :-I:Ic orView{41e8208
BVE... R....L0D 05} frame = {{0, O 1 alpha -
1.0; apnqn.c true; shown = true; visibility = 0; w IF‘dD\. Wisibility = Qe

widget. L|r'c:1 L:L, ::.L.t
iD 0,0-800,1205);

= false; shown

Value:

get.
com. le"d ::ud inter r:tl w |d nt -"-.utlarB:l -ContextView]
(Pl Np— ID 0,33-800, 108 #1020355 android:id/action_mode bar};
i), 75}}; alpha = 1.0; opaque = true; shown
true; visibility = windowVisibility = 0=

<android . widget.Linear L:l,m.t

:u'd roid . widget. LIF'E:I. L:L,::L.t B3
342, -I-f:u'nc 0, 21}, { 1 33

wenals 180,21~
a= I 0; opaque = false;

5. In the Output panel, locate the outputViewHierarchy. Look for interesting things
to validate in the text that you find.

Optionally, copy the text from this output into a separate text file to use as a
source for interesting things to validate in the Zirco Browser app (as opposed
to its web content). The View Hierarchy can provide many text elements for
validation and property set creation that are of great use to a tester unfamiliar

with an app's code base.

67

6. If you also added outputXMLHierarchy, locate it as well.

Output

MName: | outputXmiHierarchy

—<XmlHierarchy>
—<DecorViews
—<LinearLayout>
—<ActionBarContextView touchTestld="16900141">
—<LinearLayout>
<ImageView touchTestld="16908870"/>
—<LinearLayout>
<TextView text=
<TextView text=
<LinearLayout>
</LinearLayout>
—<LinearLayout touchTestld="16908879">
<ImageView/>
<TextView text="Done"/>
</LinearLayout>
—<ActionMenuViews>
<ActionMenultemView text="Select all" touchTestld="16908319"/>
<ActionMenultemView text="Cut" touchTestld="16908320"/>
<ActionMenultemView text="Copy" touchTestld="16908321"/>
Value: </ActionMenuViews
</ActionBarContextViews>
—<FrameLayout touchTestld="16908290">
—<LinearLayout=>
—<RelativeLayout>
—<ViewFlipper touchTestld="ViewFlipper">
—<RelativeLayout>
— <CustomWebView touchTestld="webview">
<AnchorViewss>
</CustomWebViews
</RelativeLayout>
<ViewFlipper>
—<LinearLayout touchTestld="BarLayout">
<ProgressBar touchTestld="WebViewProgress"/>
—<LinearLayout>
<ImageButton touchTestld="ToolsBtn"/>
<AutoCompleteTextView text="about:start" touchTestld="UrText" >
<ImageButton touchTestld="GoBtn"/>
</LinearLayout>
</LinearLayout>
PR

P b LT T3 NS 1o

ext selection” touchTestld="16908877"/>
touchTestld="16908878"/>

10. Finally, select App Action4 in the Result Details dashboard, and once again

locate the Outputs section.

68

Expand it to view the screenshot set on this action.

Output

Outputs

Name: | captureScreenshot

Locator {optional):

Q

http://www.soasta.com/

‘ N Web performance testing »
&=

%) =

69

7. If you added outputWebHtm/Source, locate it in the Outputs section as well.

Output)
Add Validation

Name: |outputWebHimlSource

Command: |::uutp-ut—wel:—HtrrISaurce

<|—<l[endifl—><head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible'
content="|E=edge,chrome=1">

<meta name="viewport" content="height=device-height,
width=device-width, initial-scale=0.8">

<title=Functicnal and Performance Testing for Web and
Mobile Apps | SOASTA< title=

<|-- meta tags should be handled by SEO plugin. |
recommend {hitp:/fyoast.com/wordpress/sea/) —=

<l mobile optimized —>
<meta name="viewport" content="width=device-width">

<|-- allow pinned sites —=
<meta name="application-name” content="S0OASTA">

Add an Image Validation (Zirco Browser)

1. Click the Add Validation button beneath the captured screenshot in the Output

panel.

2. When you do so, focus returns to the Clip Editor and a verifyScreenshot is

added to the action (in this case, App Action4).

3. Leave Locator blank.

MName | verifyScreenshot

Command | verifyScreenshot

Locator (optional) hd @ &
Tolerance (%) 5 D
creenshot B | R fimww saasta fam o

4. Specify a tolerance of 90 (as a percentage of image variation). If this fails when

you play the test composition, try setting it to 80, and so forth.
5. In this case, accept the default Failure action for this validation.

6. Save the test clip.

70

7. In the Composition Editor, click Play once again.

Adding an HTML Validation (Zirco Browser)

Since the test clip is already open, let's also add a validation on text from an HTML
page to the same action (App Action4). This time we will use the lower panel to do
so. Ensure that your mobile device is connected and running TouchTest Agent before

proceeding with the following steps.
1. Double click App Action4 to open it in the lower panel.
2. Locate Validations in the tree on the left.

3. Click the green Plus (+) icon on the previously added form (the

verifyScreenshot we added above).

4. Change the Command drop-down on the new validation form to

verifyWebHtmlSource.

5. Change the Match field to Glob and then enter *web performance testing®.

Mame | verifyWebHtmlSource
Command = verifyWebHtmiSource
Glob * | "Web performance testing® B £

Errors should: = be recorded only

1. In this case, accept the default Failure action for this validation Be recorded

only.
2. Save the test clip.

3. In the Composition Editor, click Play once again.

71

Analyzing Validations in Results (Zirco Browser)

Now that we've added validations on an image, and on text in an HTML page, we will
learn how to examine those validations on their merits. In the best-case scenario, the
parameters added in Advanced Clip Editing work without a hitch. We can easily verify

the status of our parameters in Result Details.

Result Details

Element Ststus Element Typs Operation
Al FlLAu s [Au

¥ B Draft of Composition for Zirce Browser (Officia) created ¢ | [| o/ Gompleted - With No Errors | Total Components: 1 Total Messages and Actions: 1 Error Companents: 0
¥ £ Band1
¥ W Track 1

¥ |y Clip for Soasta Demo Nexus Zirco Browser-21

AppIACH!

() Soasta Demo Nexus Zirco Browser

1 App Action

&/ App Action2 Band1 » Track1 » Clipfor Soasta Demo Nexus Zirco Browser-21 » App Actiond

& App Action3 F] >
& App ActionS
&' App Actiong General

Operation: webClick Name: App Actiond

Start Time Response Time

14.155 sec. 6.623 sec.

Waits And Validations [z7) Custom Properties E5)

werifyScreenshot: Passed
verifyWebHtmiSource: Passed

Input [Z7 Output [E5)

Validations
Name: | Locator

Value: \-’-’di\-[@class—‘wra: clearfix)/div[1)a Name: | verifyScreenshot

Command: | output-captureScreenshot |

Locator (optionall: | |

Name: | Tap Count Tolerance {%): | J

Value: {"tapCount":"1" "tapOffset”:"126,22" “touchCount":" Expected

Observed

B | http:weaw snasta comy

AT ol o

72

7. In Result Detalls, select the clip element that had the validation. For example,

App Action4 (as shown below).

Result Details
Element Status Element Type Opearation
All + || Al 4 [LAl v

¥ BS Draft of Gomposition for Zirco Browser (Officia) created ¢ | [Q/ Completed - With No Errors Total Components: 1 Total Messag

¥ E i Band1

¥ W Track 1 Jaor
7 | Clip for Soasta Demo Nexus Zirco Browser-21 1
(=) Soasta Demo Nexus Zirco Browser ’_:f
.;') App Action]
& App Action2 Band1 b Track1 b Clipfor Soasta De
& App Actiond P
—l

& App Actions
4 App Actions General

Operation: webClick

Start Time

14.155 sec.

Waits And Validations

]

verifyScreenshot: Passed

verifyWebHtmiSource: Passed

8. Inspect the information on the Summary tab for the selection. In the result

above, both validations on App Action4 passed in the result shown.

73

9. Click verifyScreenshot in the Waits and Validations section to bring it into focus

in the Output section.

Waits And Validations [iZ] Custom Properties)

verifyScreanshot: Passed
verifyWebHtmiSource: Passed

No property changes
Input [Output &
Name: | verifyScreenshot
Name: iz Command: | output-captureScreenshot |
Value: | ffdiv[@class="wrap clearfix)/div[1]/a Locator (optional: | |
Tolerance (%): | |
Expected
Name: | Tap Count Observed
Valve: | {"tapCount™"1","tapOffset":"126,22" "touchCount"" B | bt soasta comd 4

Note: Since we didn't check Only if there is an errorin the Output form a shot

of the success is included in this result for the given app action.

1. Click verifyWebHtmlSource in the Waits and Validations section to bring it into

focus in the Output section.

Waits And Validations [i7] Custom Properties [E3)
verifyScreenshot: Passed
verifyWebHtmiSource: Passed
No property changes
Input [Output [

Name: | verifyWebHtmlSource
Name: | Locator

Command: | output-webHtmiSource |

.| jdivigclass="wrap ¢l /v,
value: | //div[@class="wrap clearfix/div[1)/a Expecied: | “Web performance testing” |

<|—<l|[endif]-=><head>
<meta charset="utf-8">
=meta hitp-equiv="X-UA-Compatible”
content="1E=edge,chrome=1">
Name: | Tap Count <meta name="viewpaort"

- content="height=device-height, width=device-width,
Value: | {"tapCount™"1" "tapOffset™:"126 22" "touchCount":" initial-scale=0.8">

Observed:

«<title=Functional and Performance Testing for
Web and Mobile Apps | SOASTA< titles

<|-- meta tags should be handled by SEO
plugin. | recommend
{http:/fyoast.com/wordpress/sen/) —>

<|-- mobile optimized -->

2. Click the Events list tab for the given selection to view action-related events,

including validations. Click the Details arrow to inspect any event's details.

74

3. Click the Output section's Maximize icon to view the verifyScreenshot in full.

Click between the Expected and Observed tabs to see the comparison images.

4. Click the Events List tab in the middle panel of Result Details to view the
complete text stream of events for the given selection. Note the validation

relevant headings.

Event(s)
Event Time Level Event Code Description
23 14155 Info App Action: send Performing App Action.
Band: "Band 1" Track: "Track 1" Clip: "Clip for Soasta Demo Nexus Zirco Browser-21" Target: "Soasta Demo Nexus Zirco
Browser”
24 14155 Verbose Transport: appbeg Performing App Action "App Action4" for Destination "Soasta Demo Nexus Zirco Browser", operation "webClick".
Band: "Band 1" Track: "Track 1" Clip: "Clip for Scasta Demo Nexus Zirco Browser-21" Target: "Scasta Demo Nexus Zirco
Browser"
¥ Details:
25 23510 Verbose Transport: append App Action "App Action4" completed.
Band: "Band 1" Track: "Track 1" Clip: "Clip for Scasta Demo Nexus Zirco Browser-21" Target: "Soasta Demo Nexus Zirco
Browser"
¥ Details:
26 23510 Info Validation: vstart Starting validation "verifyScreenshot".
Band: "Band 1" Track: "Track 1" Glip: "Clip for Soasta Demo Nexus Zirco Browser-21" Target: "Soasta Demo Nexus Zirco
Browser”
27 23841 Verbose Validation: vepass Validation of response body passed.
gand: “Band 1" Track: "Track 1" Clip: "Clip for Scasta Demo Nexus Zirco Browser-21" Target: "Socasta Demo Nexus Zirco
rowser"

28 23842 Info Validation: vpass Validation verifyScreenshot passed.
Band: "Band 1" Track: "Track 1" Clip: "Clip for Soasta Demo Nexus Zirco Browser-21" Target: "Soasta Demo Nexus Zirco
Browser"

29 23842 Info Validation: vstart Starting validation "verifyWebHtm! ce".
Band: "Band 1" Track: "Track 1" Clip: "Clip for Scasta Demo Nexus Zirco Browser-21" Target: "Socasta Demo Nexus Zirco
Browser"

30 23845 Verbose WValidation: vcpass Validation of response body passed.
Band: "Band 1" Track: "Track 1" Clip: "Clip for Scasta Demo Nexus Zirco Browser-21" Target: "Socasta Demo Nexus Zirco
Browser"
ey :

3 23846 Info Validation: vpass d verifyWebHtml ce passed.
Band: "Band 1" Track: "Track 1" Clip: "Clip for Scasta Demo Nexus Zirco Browser-21" Target: "Soasta Demo Nexus Zirco
Browser"

32 23846 Info App Action: sent App Action completed.
Band: "Band 1" Track: "Track 1" Clip: "Clip for Soasta Demo Nexus Zirco Browser-21" Target: "Socasta Demo Nexus Zirco
Browser"

75

Appendix I: Using TouchTestIDs in Your Project Source Code

TouchTestIDs (TTIDs) are provided as a means to make your tests more user-friendly
and readable. For developers, SOASTA TouchTest also provides the ability to define
explicit mobile app locators, known as TouchTestIDs (TTIDs) as an integral part of
touch-testing. Once implemented, TouchTest gives preference to recording the

TouchTestID as the default locator.

Minimally, using TouchTestIDs requires the following source code modifications for
both iOS and Android projects:

1) An import statement in the view where TTIDs will be used (e.g. using the OS-

specific syntax required).

2) In any given view, call setTouchTestId and assign a string parameter to each view

that needs one.

Once TTIDs are added TouchTest gives preference to recording the TouchTestID as

the default locator. The use of touchTestId in Locators is described below.

Adding TouchTestIDs to an Android (Native) App

For Android developers, implementing TTIDs is a straightforward two-step process for
each view where a TTID is desired. The use of touchTest1d in Locators is described

below.
1. Identify the source file where the view is initialized.
2. For each view that will include TouchTestIDs, initialize the view using:
Import com.soasta.android.touchtest.TouchTestDriver;
3. Next, call the setTouchTestId method on each view that will be located.
For example,
TouchTestDriver.getInstance () .setTouchTestId (aView, "aTouchTestId");

The string parameter provided here (e.g. aTouchTest1d) will be used to locate the

element.

Note:

There is no built in support for Conditional Compilation in Java. Users of
Ant, maven, and other tools should still use the TouchTestld conditionally,
in such a manner that guarantees it is not part of code that gets

submitted to any store.

For example, you could write an Ant build.xml that runs a preprocessor

before compile. A good Ant trick along similar lines can be found here.

https://weblogs.java.net/blog/schaefa/archive/2005/01/how_to_do_condi.html

Adding TouchTestIDs to an Android (Hybrid) App

For HTML-based hybrid apps, as well as for web sites recorded with TouchTest Web
for Android, TouchTest and TouchTest Web utilize the HTML id attribute as the
TouchTest ID.

In the following HTML code, the id="hello" will be recorded as the TouchTestID:

<input type="submit" wvalue="Hello!" onClick="buttonClicked()’’ id=‘‘hello">

Appendix ll: Adding a Mobile App Manually (Mobile
Administrator)

In cases where manual project integration has been used, it will be necessary to
manually add a mobile app to TouchTest®. These instructions apply equally to native
and hybrid apps. As noted elsewhere, each TouchTest Lite user is also a Mobile

Administrator for that Lite instance.

1. Select Central > Mobile Apps and then click New. The Mobile App form

appears.

2. Enter the app name as it will appear in the drop-down for user selection.

Generally, this will also be the Project name.

3. Optionally, enter a description and an app version number. Version number will

generally match Project details.

Wb | v | add | a4l

MName DroidFish
Description
P
Version
Qs Android

Minimum OS Version

Launch URL touchtest-Oac 3e748-dbal-4968-9415- 78622044874/
No image selected S
lcon

4. Select Android as the OS. For this release, TouchTest supports Android 2.3.3

version or later.

5. Provide the launch URL. Users must add this application ID to their mobile app
AndroidManifest.xml file. Without doing that, testing will not happen.

A%

6. Optionally, import an app image for your mobile app to visually represent the

correlation of TouchTest™ Agent with your app.

Supported image types include JPEG, PNG, and GIF. Images can be pre-edited
to the requisite 57 pixels wide by 57 pixels tall. Images that are not cropped

will be shrunk to fit within the requisite dimensions.

7. Click Save to create this mobile app object in TouchTest

Appendix Ill: Using Eclipse (Eclipse Developer Only)

This appendix preserves Eclipse development instructions that have been superceded
by Gradle and presumes that the Android developer has a basic familiarity with the

Eclipse development environment and has the following configuration:
e Eclipse (version 3.6 or later) with Android SDK version 10 or later installed along
with the Eclipse plugin.
e Java 6 is installed.

Installing the ADT for Mac OS X

o To download Eclipse for Mac OS X, click here. Most users download

Eclipse Classic.
o For SDK install and instructions, click here.

» Note that an SDK must be downloaded and enabled via the SDK
Manager. For SDK Manager help, click here.

Installing the ADT for Windows

o Download the ADT Bundle, which includes the Eclipse Android IDE, here.
Once the page is loaded, click "Download for Other Platforms" at the
bottom of the page and select the appropriate Windows version of the
ADT Bundle to download (e.g. you'll need to know if your Windows
system is 32-bit of 64-bit).

» Also note, that if you don't already have a Java Development Kit
installed on your Windows instance, you'll need to install it before
you start the ADT Bundle install. Click here to get the JDK and

then select either the Windows x86 or x64 version.

o With the JDK already installed, Windows users can proceed using the

installation instructions here.

http://www.eclipse.org/downloads/
https://developer.android.com/sdk/installing/index.html
http://developer.android.com/tools/help/sdk-manager.html
http://developer.android.com/sdk/index.html?utm_source=weibolife
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://developer.android.com/sdk/installing/bundle.html

o For help setting up a virtual device, click here.

The Minimum Android Version supported for use with TouchTest™ is 2.3.3

(Gingerbread).
Install the ADT Plugin for Eclipse here (or do so via the Eclipse user interface).

The git executable file, for either Mac OS X or Windows, is used to retrieve the
Android example projects used in this tutorial. GitHub can also be used.
Windows git users should note that MakeAppTouchTestable will run from the
Windows command prompt while Windows git versions (such as this one) offer

both a Git Bash or a Windows Command Prompt

The native app example, DroidFish, uses the Android NDK and so instructions
are provided for installing it, although this is not a requirement of TouchTest
itself, and users following only the Zirco Browser example can ignore NDK

entirely.

Unless you have a different Android native mobile app you'd like to use with
this tutorial, install the Android NDK toolset into your Mac OS X or Windows

Eclipse environment before proceeding. Additional configuration instructions

are provided below at the appropriate time.

https://developer.android.com/tools/devices/index.html
http://developer.android.com/sdk/installing/installing-adt.html
http://git-scm.com/download/win
http://developer.android.com/tools/sdk/ndk/index.html

Downloading MakeAppTouchTestable Software (Eclipse Developer
Only)

As noted above, your app can be made "touch-testable" via the Gradle Plugin or by
using the MATT utility.

1. For Eclipse or any other build system, download and unarchive the

MakeAppTouchTestable Utility from the TouchTest Resources page.

Downloads

8 Make App TouchTestable Utility
@ TouchTest Web iOS Project

@ i0S App Installer Utility
[} TouchTest Agent Android app
[} TouchTest Web Android app

Note: This archive contains the necessary drivers for both the manual and

automatic methods (using Eclipse) described below.

¥ [MakeAppTouchTestable Today 5:28 PM
¥ (] android Today 5:28 PM
.D5_Store Today 5:28 PM
» [eclipse Today 5:27 PM
_L custom_rules.xmil Aug 23, 2012 6:52 PM
.D5_Store Today 5:28 PM
» [] TouchTestDriver Today 11:53 AM
» O ios Today 11:53 AM
» [lib Today 11:53 AM
@ MakeAppTouchTestable.jar Today 11:53 AM
» [titanium Today 11:53 AM
._", ReadMe.txt Jun 19, 2012 5:52 PM
.DS_Store Today 5:28 PM

About the Eclipse Examples

Two Eclipse examples are presented in this tutorial in parallel, the first for native apps
and the other for hybrid apps.

e To learn how to test a native Android mobile app, follow the DroidFish

examples in this tutorial.

e For native Android apps, we'll set up the DroidFish sample app to use with a
TouchTest test clip. We will use git to retrieve the necessary DroidFish source
code. If you will not be using hybrid apps, skip all the sections pertaining to

Zirco Browser.
To learn how to test a hybrid Android mobile app, follow the Zirco Browser example.

e For hybrid Android apps, we'll set up the Zirco Browser sample app to use with
a TouchTest Hybrid test clip. If you will not be using native apps, skip all the

sections pertaining to DroidFish.
If you'd like to test both types, simply follow all of the instructions in this tutorial.

Note: Sections intended for developers only are marked so, although in some cases
testers may also wish to follow them. Other sections are for general use (but may
require assistance from someone else on your team, for example, when a developer or
other tester is in charge of getting the app to test onto your mobile device so that

you can focus on creating tests).
Importing the DroidFish Project in Eclipse

Use the following instructions for both Mac OS X and Windows.

1. Launch - and right-click in the Package Explorer to choose Import.

000 Java -
(wp) 8B |8id|% 0 | BEGC|S®S
13 Package Explorer 53 Ble - -0
New >
Show In W >
Copy #C
Copy Qualified Name
[Paste ®Y
¥ Delete 3
s Export...
«* Refresh F5

2. In the Import box, choose General > Import Existing Android Code into

Workspace.

8086 Import

Select

Select an import source:

(tb,fpe filter text _)

[__| File System
El preferences

¥ = Android
% Existing Android Code Into Workspace

b= C/C++

b= CVS

P =EIB

P (= Install

P = Java EE

P (= Plug-in Development

P = Remote Systemns

P = Run/Debug

P = Tasks

P = Team

= Web

b =-Web services

B (= XML

@ < Back E—NBE[—D—; | Cancel | Finish

3. Select the root directory for the DroidFish (or other project).

Import Projects

Select a directory to search for existing Android projects

Root Directory: | /Users/jgardner/Documents/Demao/droidfishchess_andro |. Browse... |

Projects:

IgT org.petero.droidfish.DroidFish (fUsers/jgardner/Documents/Demo/dro [selectall |
| Deselect all |
| Refresh |

|| Copy projects into workspace

Working sets
[| Add project to working sets
Working sets: H Select...
® | <Back | Mext > | cancel | | Finish |

The Mac OS X example is shown above, while the Windows example is shown below.

The environment is slightly different in appearance but includes the same details.

@ = []
Import Projects

Select a directory to search for existing Android projects

Root Directory: Viwmware-host\Shared Folders\Documents\droidfishchess_ar | Browse..,
Projects:

Project to Import MNew Project Name Select All

| Wwmware-host\Shared Folders\D... DroidFish
Deselect All

illlo

Refresh

Copy projects into workspace
Woaorking sets

Add project to working sets

':?:' = Back lext > [Finish] | Cancel

4. Click Finish to complete the import. The DroidFish project is added to the

Package Explorer list in Eclipse.

Configuring the NDK Builder (Droidfish Only)

As noted above, Droidfish requires the NDK toolset in order to facilitate its use of
native-code components. As a result, after our import we have a project that will not

yet compile. Use the following steps to employ the NDK toolset.

1. Select the Droidfish project in the Package Explorer and then right-click to

choose Properties.

SRS RS TAVE = ECTIpSE = TUSErs[JgaraneT T DGCImEnTs T
| 4 8B |2 |EB5d|H- 0w | BHEG|S®ES 5] - - vy
By ar 52 E‘G:{'} v = H

New »

Go Into

Open in New Window

Open Type Hierarchy F4

Show In TEW >

= Copy #EC

£z Copy Qualified Name

[Paste £

¥ Delete =
Remove from Context {3l

Build Path >

Source S ¥

Refactor uT >

t1g Import...

3 Export...

+" Refresh F5

Close Project
Assign Working Sets...

Run As »

Debug As >

Profile As >

Validate

Team > & Problems (@ Javadoc (= Declaration [E Console &3
Compare With > SDUE

Restore from Local History...

Android Tools >

Configure >

Properties |

o* DroidFish

2. Select Builders in the Properties list on the left and then select Native_Builder.

3. With Native_Builder selected, click the Edit button.

Properties for DroidFish
type filter text Builders v r v
P Resource
Android Configure the builders for the project:
Android Lint Preferences v @.Andmid Resource Manager | New, |
Builders v [&i} Android Pre Compiler
Java Build Path v [5ib Java Builder [Import... |
P Java Code Style .) —
- IET % Mative_Builder
P Java Compiler 7 & B r—
» Java Editor : copy_stockfish | Edit... |
Javadoc Location v @aﬁmdmid Package Builder
Project Facets I&I
Project References
Run/Debug Settings
b Task Repository | Up |
Task Tags
P Validation ——————
WikiText | Down |
('_?:\) | Cancel | | OK |

4. In the Edit Configuration box, Location field enter the path to the OS-specific
NDK toolset’s ndk-build executable.

Windows users will specify the location of the ndk-build.cmd file, which is found in

the same location as the Mac version (e.g. in the download folder as shown below).

FAVORITES & 7B8efBac5-3...bileprovision [build L
7 AiD i android-ndk-rBb ~ [docs [
R0 (] Appcelerato..._ Workspace + & documentation.html

s N (] Appcelerato...pace_Mrunal = | GNUmakefile
=% Applications _
1.1_\!: pp)

[Aptana Rubles * M ndk-build 1__
Deskto |r—_d| codesigning.. eloperprofile | ndk-build.cm
P Eclipse setup M ndk-gdb ‘\

E
. [ios documents ~ @ ndk-stack
= [3 ios outline [platforms P

In the Mac OS X example below, this is "/Users/<user>/Documents/Demo/android-

ndk-r8b/ndk-build." For Windows users, the path will be the same with the .cmd

extension added.

Edit Configuration

Edit launch configuration properties Q
Create a configuration that will run a program during builds !r-ir-_l

Name: | Mative_Builder |

: Main qgh Refresh\l ® EnviranmentNI = Build Optionsw

Location:

I fUsers/jgardner/Documents/Demo/android-ndk-r&b/ ndk-build

[Browse Workspace...] [Browse File System...] [Variables...]

Working Directory:

I fUsers/jgardner/Documents/Demo/droidfishchess_android

[Browse Workspace...] [Browse File System...] [Variables...]

Arguments:

| variables... |
Mote: Enclose an argument containing spaces using double-quotes ().
Apply Revert

@ | cancel | | oK |

5. In the Working Directory, specify the location of Droidfish (same as noted
above).

6. Click OK to accept the new builder configuration.

Setting Up the Droidfish Project in Eclipse (Native App Developer)

Next, we will retrieve the native app, Droidfish, for use as an example app. After it is
downloaded, we will then add TouchTest™ capabilities to it via the

MakeAppTouchTestable utility.

You can use GitHub to download the DroidFish app's source code here, or use the git

command from within either Terminal or the Windows Command Prompt using the
following syntax (and presuming that git is in the path):

git clone https://github.com/elitecoder/droidfishchess android

1. Once downloaded, inspect the DroidFish project's components prior to running

the utility. The unarchived project folders are shown below.

v [] Demo Today 5:10 PM
DS_Store Today 5:39 PM

¥ | droidfishchess_android Today 5:10 PM
» | bin Today 5:16 PM

» [gen Today 5:16 PM
classpath Today 5:10 PM

» externalToolBuilders Today 5:10 PM

> git Today 5:10 PM
project Today 5:10 PM

> settings Today 5:10 PM

7 AndroidManifest.xml Today 5:10 PM

|| assets Today 5:10 PM

| build_copy_exe.xml Today 5:10 PM

| build.xml Today 5:10 PM

» L jni Today 5:10 PM

| project.properties Today 5:10 PM

° README.md Today 5:10 PM

> L res Today 5:10 PM

> [src Today 5:10 PM

In our Mac OS X example, shown above, the DroidFish project is located in

~/Documents/Demo/droidfishchess_android.

https://github.com/elitecoder/droidfishchess_android
https://github.com/elitecoder/droidfishchess_android

In our Windows example, shown below, the DroidFish project is located in

UsersW<user>WDocumentsdroidfishchess_android.

v Documents » droidfishchess_android »

.
Mame

. assets

. gen

L jni

| res

| sre
AndroidManifest
build
build_copy_exe

»
LA LA LA L

um]

custom_rules
| project.properties
|| README.md

- | +y | | Search

Date meodified

2/10/2014 10:09 AM
2/10/2014 10:09 AM
2/10/2014 10:09 AM
2/10/2014 10:09 AM
2/10/2014 10:09 AM
1/24/2014 1:43 PM
1/24/2014 1:43 PM
1/24/2014 1:43 PM
1/24/2014 1:43 PM
1/24/2014 1:43 PM
1/24/2014 1:43 PM

Type

File Folder

File Folder

File Folder

File Folder

File Folder
XML Docurment
XML Docurment
XML Docurment
XML Docurment
PROPERTIES File
MD File

Note your own path for use in the next section as well as in the

MakeAppTouchTestable section below.

Importing the DroidFish Project in Eclipse

Use the following instructions for both Mac OS X and Windows.

5. Launch Eclipse and right-click in the Package Explorer to choose Import.

LWL T—— N— ——— pa— N
iy 88| |8ids-0-a |BHe | S®S
I# Package Explorer 53 gl ~-0
New >
Show In CHEW >
Copy #C
Copy Qualified Name
[Paste BV
Delete E34
s Export...
«* Refresh F5

6. In the Import box, choose General > Import Existing Android Code into

Workspace.

8086 Import

Select

Select an import source:

(tb,fpe filter text _)

[__| File System
El preferences

¥ = Android
% Existing Android Code Into Workspace

b= C/C++

b= CVS

P =EIB

P (= Install

P = Java EE

P (= Plug-in Development

P = Remote Systemns

P = Run/Debug

P = Tasks

P = Team

= Web

b =-Web services

B (= XML

@ < Back E—NBE[—D—; | Cancel | Finish

7. Select the root directory for the DroidFish (or other project).

Import Projects

Select a directory to search for existing Android projects

Root Directory: | /Users/jgardner/Documents/Demao/droidfishchess_andro |. Browse... |

Projects:

IgT org.petero.droidfish.DroidFish (fUsers/jgardner/Documents/Demo/dro [selectall |
| Deselect all |
| Refresh |

|| Copy projects into workspace

Working sets
[| Add project to working sets
Working sets: H Select...
® | <Back | Mext > | cancel | | Finish |

The Mac OS X example is shown above, while the Windows example is shown below.

The environment is slightly different in appearance but includes the same details.

@ = []
Import Projects

Select a directory to search for existing Android projects

Root Directory: Viwmware-host\Shared Folders\Documents\droidfishchess_ar | Browse..,
Projects:

Project to Import MNew Project Name Select All

| Wwmware-host\Shared Folders\D... DroidFish
Deselect All

illlo

Refresh

Copy projects into workspace
Woaorking sets

Add project to working sets

':?:' = Back lext > [Finish] | Cancel

8. Click Finish to complete the import. The DroidFish project is added to the

Package Explorer list in Eclipse.

Configuring the NDK Builder (Droidfish Only)

As noted above, Droidfish requires the NDK toolset in order to facilitate its use of
native-code components. As a result, after our import we have a project that will not

yet compile. Use the following steps to employ the NDK toolset.

7. Select the Droidfish project in the Package Explorer and then right-click to

choose Properties.

SRS RS TAVE = ECTIpSE = TUSErs[JgaraneT T DGCImEnTs T
| 4 8B |2 |EB5d|H- 0w | BHEG|S®ES 5] - - vy
By ar 52 E‘G:{'} v = H

New »

Go Into

Open in New Window

Open Type Hierarchy F4

Show In TEW >

= Copy #EC

£z Copy Qualified Name

[Paste £

¥ Delete =
Remove from Context {3l

Build Path >

Source S ¥

Refactor uT >

t1g Import...

3 Export...

+" Refresh F5

Close Project
Assign Working Sets...

Run As »

Debug As >

Profile As >

Validate

Team > & Problems (@ Javadoc (= Declaration [E Console &3
Compare With > SDUE

Restore from Local History...

Android Tools >

Configure >

Properties |

o* DroidFish

8. Select Builders in the Properties list on the left and then select Native_Builder.

9. With Native_Builder selected, click the Edit button.

Properties for DroidFish
type filter text Builders v r v
P Resource
Android Configure the builders for the project:
Android Lint Preferences v @.Andmid Resource Manager | New, |
Builders v [&i} Android Pre Compiler
Java Build Path v [5ib Java Builder [Import... |
P Java Code Style .) —
- IET % Mative_Builder
P Java Compiler 7 & B r—
» Java Editor : copy_stockfish | Edit... |
Javadoc Location v @aﬁmdmid Package Builder
Project Facets I&I
Project References
Run/Debug Settings
b Task Repository | Up |
Task Tags
P Validation ——————
WikiText | Down |
('_?:\) | Cancel | | OK |

10.In the Edit Configuration box, Location field enter the path to the OS-specific
NDK toolset’s ndk-build executable.

Windows users will specify the location of the ndk-build.cmd file, which is found in

the same location as the Mac version (e.g. in the download folder as shown below).

FAVORITES & 7B8efBac5-3...bileprovision [build L
7 AiD i android-ndk-rBb ~ [docs [
R0 (] Appcelerato..._ Workspace + & documentation.html

s N (] Appcelerato...pace_Mrunal = | GNUmakefile
=% Applications _
1.1_\!: pp)

[Aptana Rubles * M ndk-build 1__
Deskto |r—_d| codesigning.. eloperprofile | ndk-build.cm
P Eclipse setup M ndk-gdb ‘\

E
. [ios documents ~ @ ndk-stack
= [3 ios outline [platforms P

In the Mac OS X example below, this is "/Users/<user>/Documents/Demo/android-

ndk-r8b/ndk-build." For Windows users, the path will be the same with the .cmd

extension added.

Edit Configuration

Edit launch configuration properties Q
Create a configuration that will run a program during builds !r-ir-_l

Name: | Mative_Builder |

: Main qgh Refresh\l ® EnviranmentNI = Build Optionsw

Location:

I fUsers/jgardner/Documents/Demo/android-ndk-r&b/ ndk-build

[Browse Workspace...] [Browse File System...] [Variables...]

Working Directory:

I fUsers/jgardner/Documents/Demo/droidfishchess_android

[Browse Workspace...] [Browse File System...] [Variables...]

Arguments:

| variables... |
Mote: Enclose an argument containing spaces using double-quotes ().
Apply Revert

@ | cancel | | oK |

11.In the Working Directory, specify the location of Droidfish (same as noted
above).

12.Click OK to accept the new builder configuration.

Setting Up the Zirco Browser Project (Hybrid App Developer)

The Zirco Browser is presented here as an example of TouchTest Hybrid testing. In the
following steps, we will retrieve the hybrid app example app, Zirco Browser, and then
use the MakeAppTouchTestable utility to add TouchTest™ Hybrid capabilities to it.

After which, the app will be deployed to an Android device.

1. On the command line, change to the folder where you'd like the source code

to live. Use git (or GitHub) to download the Zirco Browser app’s source:

git clone https://github.com/elitecoder/zircobrowser android

2. Once downloaded, inspect the project’'s components prior to running the MATT
utility on it (if you are going to use MATT's apk parameter to instrument the
APK file you can still do this inspection although the project itself will not be

modified using that method). The unarchived project folders are shown below.

» git

* [bin

> [gen

» L res
» [l src

¥ || zircobrowser_android

1 AndroidManifest.xml
] assets

" build.xml
| LICENSE

| proguard-project.txt
| project.properties

Today 6:37 PM
Today 6:37 PM
Today 6:37 PM
Today 6:37 PM
Today 6:37 PM
Today 6:37 PM
Today 6:37 PM
Today 6:37 PM
Today 6:37 PM
Today 6:37 PM
Today 6:37 PM
Today 6:37 PM

4 KB

43 KB
781 bytes
446 bytes

Folder
Folder
XML Docun
Folder
Folder
XML Docun
Folder
Dacument
Plain Text
Dacument
Folder
Faolder

In our Mac OS X example, shown above, the Zirco Browser project is located in
~/Documents/Demo/zircobrowser_android. If your project is in Windows, use the

syntax appropriate for the context. In either case, note your path for use in the next

section as well as in the MakeAppTouchTestable section below.

Importing the Zirco Browser Project

1. Launch Eclipse and right-click in the Package Explorer to choose Import.

2N T—— — —— pa—— N
Ird- BB |- B0 % | BHE-|S®S
M O e, &[. ~-™
New >
Show In 8w >
Copy #C
Copy Qualified Name
[Paste H®V
Delete &
1 Export...
«# Refresh F5

3. In the Import box, choose General > Import Existing Android Code into

Workspace.

8086 Import

Select

Select an import source:

(tb,fpe filter text)

[__| File System
El preferences

¥ = Android
% Existing Android Code Into Workspace

b= C/C++

b= CVS

P =EIB

P (= Install

P = Java EE

P (= Plug-in Development

P = Remote Systemns

P = Run/Debug

P = Tasks

P = Team

= Web

b =-Web services

B (= XML

@ < Back E—Nm—»—-l | Cancel | Finish

4. Click Next.

5. Select the root directory for the Zirco Browser (or other project).

8.0.6
Import Projects k)

Select a directory to search for existing Android projects

Boot Directory: | fUsers/jgardner/Documents/Demo/ zircobrowser_androic |_ Browse... _|

Projects:

[-‘_-'I org.zirco.ul.activities. MainActivity (fUsers/jgardner/Documents/Demo/ [selectAll |
| Deselect all |
| Refresh |

|| Copy projects into workspace

Working sets
|| Add project to working sets
Working sets: H Select...
@ | <Back | Next = | Cancel | [Finish]

6. Click Finish to complete the import. The zirco-browser project is added to the

Package Explorer list in Eclipse. The project begins to compile.

KFE Package Explorer 23 =i <}:~b ¥ =0
T:L;G';org.zirm.ui.activities.Hain.ﬁ.ctivit'.r
b Ssrc
> IEﬂﬁigen [Generated Java Files]
b =i Android 2.3.3
b =i Android Dependencies
> G@ assets
b = bin
> G@ res
|21 AndroidManifest.xml
|2 build.xmil
|=| LICENSE
proguard-project.txt
project.properties

You can use "Run As..." to install the application to your Android device.

2. Locate and open the AndroidManifest.xml file with the Android Common XML

Editor and find the following line:

<uses-sdk android:minSdkVersion="7" android:targetSdkVersion="8" />

PG@res
{al Android New [
121 build.xm
SIUCENSE QOpen 3
E:zfe‘.‘: Open With > [Android Common XML Editor
P!_‘—‘,J-TouchTest‘D Show In N#EW > g Android Manifest Editor
P 823 TouchTestD 2= Copy % Text Editor
b 08 TouchTestD . ¥ XML Editor
> é'rouch'resm £2 Copy Qualified Name -
b 15 TouchTestw (= Paste BV £ System Editor
¥ Delete = Default Editor
Remove from Context “C{+3] Other...
Mark as Landmark et I|
Dasilel Dbl [

Change both values to 10 as shown below. If it is already "10" leave it as is.

<uses-sdlk android:minSdkVersion="18" android:targetSdkVersion="18" /=

<uses-permission android:name="gndroid.permission. INTERNET "»</uses-permission=
cuses-permission android:name="com.android.browser.permission. READ_HISTORY_BOOKMARKS "»</us
<uses-permission android:name="com.android.browser.permission. WRITE_HISTORY_BOOKMARKS "></u
<uses-permission android:name="android.permission. WRITE_EXTERNAL_STORAGE "s<fuses-permissio

<uses-feature android:name="android. hardware. touchscreen” android:required="true” /=
<supports-screens

android: largeScreens="true”

android:normalScreens="true"

android:smallScreens="true”

android:anyDensity="true"” /=

manifest>

ifest Application E] Permissions [I] Instrumentation | |=| AndroidManifest.xml

lems | @ Javadoc @ Declaration | Bl Conscle 58 & LogCat

3. Close the project and exit Eclipse.

Using the MakeAppTouchTestable Utility (Developer Only)

As noted in the prerequisites above, TouchTest™ uses the MakeAppTouchTestable
Utility, which is downloaded from the TouchTest, Welcome page, to modify the
Android project or the compiled APK.

Note: The TouchTest user specified to run the MakeAppTouchTestable utility
must be a user with Mobile Device Administrator rights. TouchTest Lite

users have admin rights for the given device on their own instance.
Static vs. Dynamic Instrumentation
The MATT utility supports two instrumentation methods: static and dynamic.

e Dynamic instrumentation occurs when MATT instruments a compiled file (i.e.
an APK file). This method requires that you compile your Android project
first to create an APK, after which it can be instrumented using SOASTA
51.07 or later (TouchTest 7040.58). Dynamic instrumentation is available for

all supported Android versions.

e Static instrumentation occurs when MATT instruments an Android project.
Static instrumentation is available in all TouchTest releases and for all

supported Android versions.

Making the DroidFish APK TouchTestable (Native Developer Only)

This section presumes that the APK file has already been compiled. Do so at this time

(without applying the MATT command) to proceed using the following steps. The Java

memory parameter is used prior to MATT.

1.

TIP:

On the command line, navigate to the MakeAppTouchTestable folder you

created above.

For example, in Windows Command Prompt,
cd C:\Documents\MakeAppTouchTestable

For example in Mac OS X Terminal,
cd ~/Documents/Demo/MakeAppTouchTestable

Next, run the utility on the DroidFish APK using your own modified version of

the MakeAppTouchTestable command below

For Mac OS X:

jJava -Xmxlg -jar MakeAppTouchTestable.jar -apk <Android APK> -androidsdk
<Android SDK Path> -url <TouchTest URL> -username <TouchTest user name> -password
<TouchTest password>

For Windows:

C:\Users\<user>\MakeAppTouchTestable>java -Xmxlg -jar MakeAppTouchTestable.jar
-apk <Android APK> -androidsdk <Android SDK Path> -url <TouchTest URL> -username
<TouchTest user name> -password <TouchTest password>

Copy the above command into a text file to build your own command.
Where:
e <android APK> IS the path to the APK file. As we noted above, our

example path under Mac OS X was:

~/Documents/Demo/droidfishchess android

e <Android SDK Path> is the path to the Android SDK used to compile
the APK file.

e <TouchTest URL> IS the TouchTest Lite or TouchTest instance in use.

o Using the Java parameter -xmx1g prior to jar allocates the necessary
memory to complete the operation. Otherwise, the MATT command may

throw an exception.

Here is a complete Mac OS X example:

java -Xmxlg -jar MakeAppTouchTestable.jar -apk
~/Documents/Demo/droidfishchess android/bin/Droidfish.apk -androidsdk
~/Development/android-sdk-macosx -url http://10.0.1.9/concerto -username
SOASTA DOC -password secret

Here is a complete Windows example:

C:\Users\<user>\MakeAppTouchTestable>java -Xmxlg -jar MakeAppTouchTestable.jar -
apk C:\Documents\Demo\droidfishchess android\bin\Droidfish.apk -androidsdk
C:\Development\android-sdk-macosx -url http://10.0.1.9/concerto -username

SOASTA DOC -password secret -Xmxlg

e Optionally, you can manually specify an additional 1aunchurl flag, being sure

to specify the correct URL syntax (shown below).

This argument is used in the TouchTest repository to represent your mobile app

and in the compiled app. For Eclipse projects, this setting originates in the

AndroidManifest.xml. Whether you create the TouchTestable Android app using
the project or apk MATT parameter—this launchurl must match for testing to
succeed.

For example,

-launchURL “‘Droidfish://keyl=valuelskey2=value2skey3=value3’’

MakeAppTouchTestable will configure your project, and create a new Mobile App
object in the TouchTest server repository. The Mobile App object created will have the
auto-created URL Scheme in its Launch URL field. The following text output appears in

Terminal:

Mobile App Object "Droidfish" representing your Application "Droidfish" has
been created in TouchTest Repository.

The Mobile App object created will have the auto-created scheme found in tiapp.xml

unless otherwise specified.

You will see a message similar to the following:

Will create the launch url: touchtest-edeedd67-4ea9-495a-be57-2d34eaafc510://

Making the DroidFish Project TouchTestable (Native Developer Only)

1. On the command line, navigate to the MakeAppTouchTestable folder you

created above.

e For example, in Windows Command Prompt,
cd C:\Documents\MakeAppTouchTestable

e For example in Mac OS X Terminal,
cd ~/Documents/Demo/MakeAppTouchTestable

2. Next, run the utility on the DroidFish project using your own modified version

of the MakeAppTouchTestable command below

For Mac OS X:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -project <Android
project directory> -url <TouchTest URL> -username <TouchTest user name>
-password <TouchTest password>

For Windows:

C:\Users\<user>\MakeAppTouchTestable>sh
MakeAppTouchTestable/bin/MakeAppTouchTestable

-project <Android project directory> -url <TouchTest URL> -username <TouchTest
user name> -password <TouchTest password>

TIP: Copy the above command into a text file to build your own command.
Where:
e <android project file> is the path to the root folder of your project. As

we noted above, our example path under Mac OS X was:

~/Documents/Demo/droidfishchess android

e <TouchTest URL> IS the TouchTest Lite or TouchTest instance in use. In
the example below, we show a TouchTest Lite instance on a LAN with an
Apple router, 10.0.1.9, but your TouchTest server may have a domain or

IP address prior to /concerto.

Here is a complete Mac OS X example:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -project
~/Documents/Demo/droidfishchess android
-url http://10.0.1.9/concerto -username SOASTA DOC -password secret

Here is a complete Windows example:

C:WUserst <user>¥#MakeAppTouchTestable>sh
MakeAppTouchTestable/bin/MakeAppTouchTestable

-pﬂﬂectC:\Documents\Demo\droidfishchess_android -url
http://10.0.1.9/concerto -username SOASTA DOC -password secret

e Optionally, you can manually specify an additional 1aunchurl flag, being sure

to specify the correct URL syntax (shown below).

This argument is used in the TouchTest repository to represent your mobile app

and in the compiled app. For Eclipse projects, this setting originates in the

AndroidManifest.xml. The launch URL in the compiled app and in the TouchTest,
Mobile App, launch URL field must match for testing to occur.

For example,

-launchURL “‘Droidfish://keyl=valuelskey2=value2s&key3=value3’’

MakeAppTouchTestable will configure your project, and create a new Mobile App
object in the TouchTest server repository. The Mobile App object created will have the
auto-created URL Scheme in its Launch URL field. The following text output appears in

Terminal:

Mobile App Object "Droidfish" representing your Application "Droidfish" has
been created in TouchTest Repository.

The Mobile App object created will have the auto-created scheme found in tiapp.xml

unless otherwise specified. You will see a message similar to the following:

Will create the launch url: touchtest-edeedd67-4ea9-495a-be57-2d34eaafc510://

IMPORTANT: In the next section, we inspect the project changes and then re-run
the sample app using the steps in Install to the Device. Minimally,
you must re-run the app after using the MakeAppTouchTestable

utility.

Making the Zirco Browser APK TouchTestable (Hybrid Developer Only)

This section presumes that the APK file has already been compiled. Do so at this time

(without applying the MATT command) to proceed using the following steps.

1.

TIP:

On the command line, navigate to the MakeAppTouchTestable folder you

created above.

For example, in Windows Command Prompt,
cd C:\Documents\MakeAppTouchTestable

For example, in Mac OS X Terminal, ca ~/Documents/Demo/MakeAppTouchTestable

Next, run the utility on the Zirco Browser APK using your own modified version

of the MakeAppTouchTestable command below:

For Mac OS X:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -apk <Android APK> -
androidsdk <Android SDK Path> -url <TouchTest URL> -username <TouchTest
user name> -password <TouchTest password>

For Windows:

C:\Users\<user>\MakeAppTouchTestable>sh
MakeAppTouchTestable/bin/MakeAppTouchTestable

-apk <Android APK> -androidsdk <Android SDK Path> -url <TouchTest URL> -username
<TouchTest user name> -password <TouchTest password>

Copy the above command into a text or other scratch file to begin making

your own command.
where:

e <android APK> IS the path to the APK. For example:

~/Documents/Demo/zircobrowser android/bin/zirco-browser.apk

e <android SDK path> is the path to the Android SDK used to compile the
APK file.

e <TouchTest URL> IS the TouchTest Lite or TouchTest server that you use.
So, the domain or IP address prior to the "/concerto/touchtest” string is

what we mean by TouchTest URL. Here is a complete Mac OS X example:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -apk
~/Documents/Demo/zircobrowser android/bin/zirco-browser.apk -url
http://10.0.1.9/concerto -username SOASTA DOC -password secret

Here is a complete Windows example:

C:\Users\<user>\MakeAppTouchTestable>sh
MakeAppTouchTestable/bin/MakeAppTouchTestable

—apk C:\Documents\Demo\zircobrowser android\bin\zirco-browser.apk -androidsdk
C:\Development\android-sdk-macosx -url http://10.0.1.9/concerto -username
SOASTA DOC -password secret

Advanced users can also manually specify an additional 1aunchur1l f1ag, using

the URL syntax shown below.

For example, you can impose the following convention, including optional

arguments:

-launchURL ‘‘ZircoBrowser://keyl=valuel&key2=value2&key3=value3’’

The launch URL is used by TouchTest to open your mobile app via the

corresponding device agent. The launch URL in the compiled app and in

TouchTest's Central > Mobile App, Launch URL field must match for testing to
succeed.

Once ready, run the modified command in Terminal from the
MakeAppTouchTestable folder. When you do so, MakeAppTouchTestable will
configure your APK, and create a new Mobile App object in the TouchTest
server repository. The Mobile App object created will have the auto-created
URL Scheme in its Launch URL field. The following text output appears in

Terminal:

Mobile App Object representing your Application "Zirco Browser" has been
created in TouchTest Repository.

The Mobile App object created will have the auto-created scheme found in
tiapp.xml unless otherwise specified. You will see a message similar to the
following:

Will create the launch url: touchtest-edeedd67-4ea9-495a-beb57-
2d34eaafc510://

MakeAppTouchTestable will configure your project, and create a new Mobile
App object in the TouchTest server repository. The Mobile App object created
will have the auto-created URL Scheme in its Launch URL field. You will see a

message similar to the following:

Mobile App Object "Zirco Browser" representing your Application "Zirco
Browser" has been created in TouchTest Repository.

Making the Zirco Browser Project TouchTestable (Hybrid Developer Only)

1.

TIP:

On the command line, navigate to the MakeAppTouchTestable folder you

created above.

For example, in Windows Command Prompt,
cd C:\Documents\MakeAppTouchTestable

For example, in Mac OS X Terminal, ca ~/Documents/Demo/MakeAppTouchTestable

Next, run the utility on the Zirco Browser project using your own modified

version of the MakeAppTouchTestable command below:

For Mac OS X:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -project <Android
project directory> -url <TouchTest URL> -username <TouchTest user name>
-password <TouchTest password>

For Windows:

C:WUserst <user>¥#MakeAppTouchTestable>sh
MakeAppTouchTestable/bin/MakeAppTouchTestable

-pﬁUeCt<Android project directory> -url <TouchTest URL> -username
<TouchTest user name> -password <TouchTest password>

Copy the above command into a text or other scratch file to begin making

your own command.
where:
e <android project file> is the path to the root folder of your project. As

we noted above, our example path was:

~/Documents/Demo/zircobrowser android

e <TouchTest URL> IS the TouchTest Lite or TouchTest server that you use.
So, the domain or IP address prior to the "/concerto/touchtest” string is

what we mean by TouchTest URL.

In the example below, we show an IP address that was assigned for a
given TouchTest Lite instance but it could be any other TouchTest URL

where you have rights.

Here is a complete Mac OS X example:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -project
~/Documents/Demo/zircobrowser android -url http://10.0.1.9/concerto -
username SOASTA DOC -password secret

Here is a complete Windows example:

C:\Users\<user>\MakeAppTouchTestable>java —-jar MakeAppTouchTestable.jar -
project C:\Documents\Demo\zircobrowser android -url
http://10.0.1.9/concerto -username SOASTA DOC -password secret

Advanced users can also manually specify an additional 1aunchur1 flag, using

the URL syntax shown below.

For example, you can impose the following convention, including optional

arguments:

-launchURL ‘‘ZircoBrowser://keyl=valuel&key2=value2&key3=value3’’

The launch URL is used by TouchTest to open your mobile app via the

corresponding device agent. For Eclipse projects, this setting originates in the

AndroidManifest.xml. The launch URL in the compiled app and in TouchTest's
Central > Mobile App, Launch URL field must match for testing to occur.

Once ready, run the modified command in Terminal from the
MakeAppTouchTestable folder. When you do so, MakeAppTouchTestable will
configure your project, and create a new Mobile App object in the TouchTest
server repository. The Mobile App object created will have the auto-created
URL Scheme in its Launch URL field. The following text output appears in

Terminal:

Mobile App Object representing your Application "Zirco Browser" has been
created in TouchTest Repository.

The Mobile App object created will have the auto-created scheme found in

tiapp.xml unless otherwise specified. You will see a message similar to the

following:

Will create the launch url: touchtest-edeedd67-4ea9-495a-be57-
2d34eaafc510://

MakeAppTouchTestable will configure your project, and create a new Mobile
App object in the TouchTest server repository. The Mobile App object created
will have the auto-created URL Scheme in its Launch URL field. You will see a

message similar to the following:

Mobile App Object "Zirco Browser" representing your Application "Zirco
Browser" has been created in TouchTest Repository.

IMPORTANT: In the next section, we will inspect the project changes and then re-
run the sample app using the steps in Install to the Device. Minimally,
you must re-compile the APK after using the MakeAppTouchTestable
utility.

Inspecting a TouchTestable Project (Native or Hybrid using project method)

If we are using the MATT project parameter, we can visually inspect changes to the

project in order to satisfy our curiosity, although this is not strictly necessary. If you

used the MATT apk parameter skip ahead to the next section.

1. For either project, inspect the original source folder via Finder.

e The contents of the folder where the droidfishchess_android project was

retrieved using git clone are shown below.

¥ [droidfishchess_android Today 6:31 PM -- Folder
> [assets Today 6:35 PM - Folder
> [libs Today 6:34 PM - Folder
> [obj Today 6:31 PM - Folder
» [gen Today 6:31 PM - Folder
» [bin Sep 24, 2012 11:43 AM -- Folder
| AndroidManifest.xml Sep 20, 2012 10:56 AM 3 KB XML Document
.classpath Sep 20, 2012 10:55 AM 370 bytes Document
> .externalToolBuilders Sep 20, 2012 10:55 AM -- Folder
.project Sep 20, 2012 10:55 AM 2 KB Document
> I':l TouchTestDriver S5ep 20, 2012 10:55 AM - Folder
»> .git Sep 20, 2012 10:40 AM -- Folder
» settings Sep 20, 2012 10:40 AM - Falder
| build_copy_exe.xml Sep 20, 2012 10:40 AM 615 bytes XML Document
| build.xml Sep 20, 2012 10:40 AM 4 KB XML Document
> [:l jni Sep 20, 2012 10:40 AM -- Folder
| project.properties Sep 20, 2012 10:40 AM 446 bytes Document
| README.md Sep 20, 2012 10:40 AM 92 bytes Document
> I':l res S5ep 20, 2012 10:40 AM - Folder
» [src Sep 20, 2012 10:40 AM - Falder
| custom_rules.xml Aug 23, 2012 6:52 PM 631 bytes XML Document
| library_whitelist.xml Aug 23, 2012 6:52 PM 269 bytes XML Document
| post_compile_touchtest.xml Aug 23, 2012 6:52 PM Z KB XML Document

e The contents of the folder where the zircobrowser_android project was

retrieved using git are shown below.

Name Date Modified Size Kind
.classpath Today 7:26 PM 354 bytes Document
> .externalToolBuilders Today 7:26 PM e Folder
.project Today 7:26 PM 1KE Document
| AndroidManifest.xml Today 7:26 PM 5 KB XML Document
» [] TouchTestDriver Today 7:26 PM - Folder
> & libs Today 7:26 PM -- Falder
* [bin Today 6:37 PM e Folder
* [gen Today 6:35 PM -- Folder
.checkstyle Today 6:02 FM 467 bytes Document
> Sertings Today 6:02 PM - Folder
> L5V Today 6:02 PM e Folder
| LICEMSE Today 6:02 PM 43 KB Document
| project.properties Today 6:02 PM 445 bytes Document
» [res Today 6:02 PM -- Folder
| TODO Today 6:02 PM Zero bytes Document
> [assets Today 6:02 PM -- Folder
* @l src Today 6:02 PM -- Folder
| custom_rules.xml Yesterday 11:59 AM 631 bytes XML Document

Note that in either project, the TouchTest Driver folder has been added.

2. In Eclipse, select the top-level project folder and choose Refresh.

p = =0
£ DroidFj
» =) And New »
»=iand GO lInto
» [Esrc) i
» 55 gen Open in New Window
pIuasse OPeN Type Hierarchy F4
» Z2pin Show In TEW >
¥ = jni
> lEll/:'b-res EE]] CO[J\(3C
[g and 52 Copy Qualified Name
[buili [Paste £
b""_' 3 Delete ®
proj
E ReA Remove from Context “C{31
Build Path >
Source S >
Refactor TET >
g2 Import...
e Export...
Clnse Proiert

Note that the project includes the TouchTestDriver folder.

3. In Eclipse, select the Project menu, Build Project command.

Eclipse File Edit Refactor Source Navigate Search [i-/1=9 Run Window Hel
8 00 | Open Project 5€

T B+ E?'?ﬁ?‘@xiﬁ'ﬂv%ﬁﬂ?@viéo‘j Close Project
f% Package Explorer &3 nE T=0 @Bl-"ld " 3B
TR
> dnid 2.3.3 Build Working Set [2
b =, Android Dependencies Cli?al'l--- .
b B src + Build Automatically
> 2 gen [Generated Java Files]
3 gg;ms & Generate Javadoc...
I
:g::,n Properties
F 2 libs
= libs.old
b = obj
P o res

4. Expand the TouchTestDriver folder and its subfolder (JarsForWeaving).

> G@ res
¥ = TouchTestDriver
¥ (= jarsForWeaving
;’ android.jar
;’ effects.jar
;’ maps.jar
;’TDuchTestDriver—APIvll.jar
;’TDuchTestDriver—APIle.jar
;’Tnul:hTestDriver.jar
usb.jar
*’ aspectjri.jar
*’ aspectjtocls.jar
cemmons—-codec-1.4 jar
cemmons-legging-1.0.4. jar
core.jar
httpclient-4.3.3 jar
httpcore-4.3.2.jar
#T{:uchTestDriverAntTasks.jar
11| build_copy_exe.xmil
1] build.xml
1] custom_rules.xml
|| post_compile_touchtest.xml
project.properties
4illr README.md

5. Open the AndroidManifest.xml file in XML mode (by clicking the

AndroidManifest.xml tab in the workspace).

Note that the manifest now includes a new intent-filter section that includes the

launchURL data value in android:scheme.

<intent-filter>
<gction android:name="android. intent.action MAIN"/=

<caotegory android:nome="android. intent. category. LAUNCHER"/=
</intent-filters>
<intent-filters

<gction android:name="android. intent.action. VIEW"/=

<ccaotegory android:nome="android. intent.category. DEFAULT /=

<data android:mimeType="applicationsx-chess-pgn"/=

</intent-filter>

<intent-filter=

<datao android:scheme="touchtest-Bac3erd8-dba@-4968-94F5-F86a2@d48fdc"/ =
<action android:name="android. intent.action. VIEK"/>
<category androild:name="android. intent. category. BROWSABLE />
<category androld:name="android. intent. category. . DEFAULT /=

</intent-filter=

activitw

6. Scroll down to the end of the AndroidManifest.xml.

Note the new service statement referencing TouchTest in android:exported.

sfactivity>

sactivity android:configChanges="orientation"” android:label="8string /sove_game_title"” android:name=".gctivities.EditPGN.
Jactivitys

sactivity android:configChanges="orientation"” android:label="8string/load_scid_game_title"” android:name=".activities. Lo
Jactivitys

sactivity android:label="8string/cpu_warning_title"” android:name=",gctivities.(PUlarning">

sfactivity=

cservice android:enabled="true"” android:exported="folse"” android:name="com.soasta.android. touchtest. TouchTestservice />
slications

st

7. In Eclipse's Project Explorer, right-click the ZircoBrowser folder, and then in the

Properties box, select Builders. Ensure that the TouchTest Post-Compile box is

checked.
Properties for zirco-browser
type filter text Builders =0 -
P Resource
Android Configure the builders for the project:
Android Lint Preferences 7 | Android Resource Manager New...
Builders | |G} Android Pre Compiler
Java Build Path v [ax4 Java Builder Import...
Flava Code SIyIE v lord Android Package Builder
¥Java Compiler 7 B Missi) f ecli : "
» Annotation Processing |?_|o issing builder (net.sf.eclipsecs.core.CheckstyleBuilder) Edit...
Building 7 {3, TouchTest Post-Compile
Errors/Warnings Remowve
Javadoc
Task Tags
¥Java Editor o
Save Actions -
Javadoc Location m—

Project Facets
Project References
Run/Debug Settings
Server
P Task Repository
Task Tags
FValidation
WikiText

P
|\E_}| Cancel OK

8. Now that the project is verified TouchTestable, send it to the device or

simulator a second time using Run.

Install using Eclipse

You can install an Android app to a device using Eclipse or adb (Gradle does this for
the user for free but this is not the case in Eclipse or with other platforms). After

completing install using whatever method, your are done with this Appendix, and you

should resume the main tutorial beginning with the section, /nspecting the Mobile
App in TouchTest® (Native or Hybrid.

Connect the Android Device to the desktop client running Eclipse via USB. You

can also use a simulator. A physical device must have the following set:

o The stock browser on the device should support launch of native apps

o The Developer Options, USB Debugging box should be enabled

o The Security, Unknown sources box should be enabled

Android Device.

Click the Run Droidfish button on the toolbar to build the project and push it to the

8686

Java - E

=i

L=

A g

Mr&Eai - 0-% BHFG-B®O

Run As >
Run Configurations...
Organize Favorites...

¢ |f the Android device is connected, and no Android Virtual Device (AVD) is running,
the app is installed to the device.

e If more than one device or emulator combination is available, then a selection box
appears for you to choose

¢ If no device is connected, the Android Virtual Device (AVD) will run and the
Droidfish app will be installed to it instead. The AVD must be using SDK 2.3.3 or

later.

When all of the conditions and steps above are completed, the app is pushed onto the
Android Device. The Eclipse Console will indicate success and the app will launch on the

device.

[2012-09-19
[2012-09-19
[2012-09-19
[2012-09-19
launch

[2012-09-19
[2012-09-19
[2012-09-19
[2012-09-19
[2012-09-19

device 015d15b4

:05:
daz23f4

26

- DroidFish]
- DroidFish]
- DroidFish]
- DroidFish]

- DroidFish]
- DroidFish]
- DroidFish]
- DroidFish]
- DroidFish]
11

[2012-09-19 20:05:26 - DroidFish]
act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER]
cmp=org.petero.droidfish/.DroidFish }

Android Launch!
adb is running normally.
Performing org.petero.droidfish.DroidFish activity

'015d15b4da23£411"
'015d15b4daz23£411"

Automatic Target Mode: using device
Uploading DroidFish.apk onto device
Installing DroidFish.apk...
Success!

Starting activity org.petero.droidfish.DroidFish on
ActivityManager:

Starting: Intent {

Install from the Command Line using adb

1. Connect the Android Device to the desktop client or start the Simulator(s) before
using adb. A physical device must have the following set:

o The Developer Options, USB Debugging box should be enabled
o The Security, Unknown sources box should be enabled

2. From the command line, execute the adb command using your own paths:

~/android-sdks/platform-tools/adb install -r
~/Shared/Jenkins/Home/jobs/DroidfishFunctionalTests/bin/DroidFish-
debug TouchTest.apk

When all of the conditions and steps above are completed, the app is pushed onto the
Android Device. The command line will indicate success and the app will launch on the
device:
873 KB/s (2083295 bytes in 2.330s)
pkg: /data/local/tmp/DroidFish-debug TouchTest.apk

Success

SOASTA, Inc.
444 Castro St.
Mountain View, CA 94041

866.344.8766

http://www.soasta.com

http://www.soasta.com/

