

TouchTestTM Android Tutorial

SOASTA TouchTest™ Android Tutorial

©2015, SOASTA, Inc. All rights reserved.

The names of actual companies and products mentioned herein may be the

trademarks of their respective companies.

This document is for informational purposes only. SOASTA makes no warranties,

express or implied, as to the information contained within this document

 i

Table of Contents

Why Mobile App Testing? .. 1

TouchTest® Basics ... 1

What Does Touch Test Record? .. 2

TouchTest™ for Android ... 2

TouchTest™ Hybrid ... 2

Getting Started ... 3

Prerequisites .. 4

Configuring the Android Device .. 4

Build Prerequisites .. 5

Using the TouchTest Gradle Plugin ... 7

Revise Your Gradle Build Script ... 7

Inspecting the Mobile App in TouchTest® (Native or Hybrid) .. 12

Install TouchTest Agent & Register Device to Use TouchTest 15

Associating Mobile Apps with a Specific Device .. 20

Recording a TouchTest Scenario (All Users) .. 21

Create a TouchTest™ Clip ... 21

Pause Recording ... 24

Recording a Droidfish Scenario (Native) .. 25

Recording a Zirco Browser Scenario (Hybrid) .. 30

 ii

Adding an Interval Delay between Each Action (All Users)... 32

Create a Composition (All Users) ... 33

Playing a Composition .. 35

Result Details (Droidfish) .. 36

Result Details (Zirco Browser) ... 39

Identifying and Analyzing Common Errors... 42

Network or Communication Errors ... 42

App Action and Other Errors (All Users) .. 42

Advanced Clip Editing (Droidfish) .. 44

Inspecting App Action Details (Droidfish) ... 45

App Action Properties (Droidfish) ... 46

Adding Outputs (Droidfish) .. 49

Inspecting Outputs (Droidfish) ... 51

Add an Image Validation (Droidfish) ... 53

Add a Text Validation (Droidfish) .. 54

Analyzing Validations in Results (Droidfish) ... 57

Advanced Clip Editing (Zirco Browser) ... 61

Inspecting App Action Details (Zirco Browser).. 63

App Action Properties (Zirco Browser) ... 64

Adding Outputs (Zirco Browser) .. 64

Inspecting Outputs (Zirco Browser) .. 67

 iii

Add an Image Validation (Zirco Browser) ... 70

Adding an HTML Validation (Zirco Browser).. 71

Analyzing Validations in Results (Zirco Browser) ... 72

Appendix I: Using TouchTestIDs in Your Project Source Code I

Adding TouchTestIDs to an Android (Native) App ... I

Adding TouchTestIDs to an Android (Hybrid) App ... III

Appendix II: Adding a Mobile App Manually (Mobile Administrator) IV

Appendix III: Using Eclipse (Eclipse Developer Only) .. 6

Installing the ADT for Mac OS X .. 6

Installing the ADT for Windows .. 6

Downloading MakeAppTouchTestable Software (Eclipse Developer Only) 8

About the Eclipse Examples .. 8

Importing the DroidFish Project in Eclipse .. 9

Configuring the NDK Builder (Droidfish Only) .. 14

Setting Up the Droidfish Project in Eclipse (Native App Developer) 17

Importing the DroidFish Project in Eclipse ... 18

Configuring the NDK Builder (Droidfish Only) .. 23

Setting Up the Zirco Browser Project (Hybrid App Developer) ... 26

Importing the Zirco Browser Project.. 27

Using the MakeAppTouchTestable Utility (Developer Only) .. 31

Static vs. Dynamic Instrumentation .. 31

 iv

Making the DroidFish APK TouchTestable (Native Developer Only) .. 32

Making the DroidFish Project TouchTestable (Native Developer Only) 34

Making the Zirco Browser APK TouchTestable (Hybrid Developer Only) 37

Making the Zirco Browser Project TouchTestable (Hybrid Developer Only) 40

Inspecting a TouchTestable Project (Native or Hybrid using project method) 43

Install using Eclipse .. 47

Install from the Command Line using adb ... 49

 1

Why Mobile App Testing?

TouchTest® Mobile, featuring TouchTest™ technology, delivers for the first time,

complete functional test automation for continuous multi-touch, gesture-based mobile

applications. TouchTest™ technology delivers fast, precision functional testing while

increasing the stability of automated tests across releases.

TouchTest controls mobile devices through a lightweight web service called

TouchTest™ Agent. Devices can be dedicated to testing in the lab, used as part of an

external test, or crowd-sourced as part of a high volume, globally distributed test.

TouchTest support is provided for recording user actions within any Android SDK

version 2.3.3 or greater.

TouchTest® Basics

SOASTA TouchTest® provides fast, effective performance, load and functional test

automation of any modern Web application, Web service, or mobile application in a

lab, staging or production environment using unique visual programming and multi-

track user interfaces. The TouchTest platform can utilize both public and private cloud

resources to assure any web or mobile application won’t fail under peak user traffic.

The Composition is the test itself as presented in the Composition Editor, and

contains one or more Clips arranged on Tracks and governed by user-specified

sequence and tempo. The Composition Editor is a player, debugger, and the

dashboard where results are analyzed.

The Clip is the basic building block of a test as built in the Clip Editor and has a

Target such as a web site, or in the case of TouchTest™, a mobile app. A clip can be

thought of as a visual script that is composed of a series of timed or sequenced

events, which correspond to gestures performed on the mobile device. It can contain

messages, browser or app actions, and scripts, as well as delays and checkpoints—all

of which can be organized into containers (i.e. groups, chains, transactions, etc.)—and

parameterized as required.

 2

TouchTest clips are recorded directly from the mobile app and added to the Clip as

you perform them on the mobile device.

What Does Touch Test Record?

TouchTest™ records the details of actual gestures and events that invoked on the app

that is tested. These gestures and events are represented within the Clip Editor as

App Actions. Precision recording captures and plays back all continuous touch

gestures including pan, pinch, zoom and scroll.

Each gesture you perform on a TouchTest-enabled device is precisely, and

automatically, added to the test clip as an App Action.

Like any clip element within TouchTest®, App Actions have inputs and outputs, as well

as properties, waits, and validations that can be parameterized. Additionally, an App

Action can be added to any containers (e.g. transactions, groups, etc.).

TouchTest™ for Android

TouchTest™ for Android brings the innovative functional test automation capabilities of
TouchTest™ to Android mobile apps on your Android device or emulator.

When combined with Android, TouchTest™ technology delivers precision functional testing
that increases the stability of automated tests across releases.

TouchTest
®

can launch Android mobile apps that are under test using the Android mobile
app, TouchTest™ Agent. Devices can be dedicated to testing in the lab, used as part of an
external test, or crowd-sourced as part of a high volume, globally distributed test.

Using SOASTA TouchTest™ Driver, which is compiled into the app under test, support is
provided for recording, playback and validations of user actions within any Android device.
There is no need to jailbreak the Android device and the device can be untethered.

TouchTest™ Hybrid

TouchTest™ Hybrid extends TouchTest mobile app support to include the recording and
playback of Android hybrid apps. Hybrid mobile apps in Android are those mobile apps that
render a web page as a portion of its content.

TouchTest Hybrid extends the TouchTest native mobile app support to every Android mobile
app on your device.

When you record a TouchTest clip in a hybrid mobile app, the new App Action type, webClick
appears in the test clip.

 3

Getting Started

The tutorial is written for TouchTest or TouchTest Lite users who are either Android

developers and/or testers, and who want to learn to use TouchTest and TouchTest

Hybrid techniques to test their own mobile apps. The preferred method for deploying

TouchTest is Gradle because it simplifies integrating TouchTest.

Steps are provided for using the TouchTest Gradle Plugin (with Android Studio).

Additionally, for Eclipse users, the MakeAppTouchTestable utility is provided. Eclipse

and MATT instructions are found in Appendix III at the end of this tutorial.

To use TouchTest techniques for test creation on a ready-to-test, proceed with

Recording a TouchTest Scenario below.

 For test creation examples, we'll first record a basic TouchTest test clip using

each mobile app, then add that test clip to a test composition and play it to

see initial results; after which we'll refine each test clip by adding outputs and

validations, and then finally, we'll analyze the results of a fully articulated test

composition.

If you are a tester with a device where the mobile app is installed, but you still need

to register a TouchTest Agent on it, begin with the Preparing an Android Device

section.

 4

Prerequisites

TouchTest™ recording is performed by any TouchTest user by accessing or deploying

the following TouchTest® components on the desktop and on a Android device

running 2.3.3 or later:

 The TouchTest® (or TouchTest® Lite instance) where the user has rights and

will login to start recording.

 The TouchTest™ Agent; a per mobile device agent pointed at the same

TouchTest®/Lite instance installed on the Android device. The TouchTest Agent

app will be installed from the TouchTest, Resources page onto the given

Android device. Download and registration instructions are included in the

following sections.

Note: If you’re using the Appcelerator Titanium Studio—refer to the TouchTest™

for Appcelerator Android Tutorial instead of this tutorial.

 The mobile app to test. For this tutorial, two sample apps are presented, but

you can also use your Android native or hybrid mobile app. The deployed

mobile app and its corresponding entry in TouchTest's Central > Mobile Apps

list must share the same launch URL in order for testing to succeed as

discussed in the MakeAppTouchTestable sections below.

Configuring the Android Device

The Android Device must first be in Developer mode. Note that the Developer

Options section is not shown by default in Android device Settings. A secret

handshake is required.

Use the following steps to enable Developer mode on the device:

1. Tap Settings

2. Tap About phone.

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Appcelerator_Android_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Appcelerator_Android_Tutorial.pdf
http://blog.immersion.com/2013/05/developer-options-galaxy-s4/
http://blog.immersion.com/2013/05/developer-options-galaxy-s4/

 5

3. In the About phone section. Tap the list item labeled Build Number seven

distinct times.

4. After 3 taps, each tap shows a new toast message encouraging you to keep

going. After the last tap, the message “You are now a developer” appears.

Subsequently, your Android device should also have the following Settings:

 In the device settings, tap Developer Options and check the USB Debugging

box.

 In the device settings, tap "Security" and then tap to check the Unknown

sources box.

Optionally, you can also enable Android's built-in equivalent of TouchTest's (iOS only)

Head's Up Display by using the following device steps:

1. On the mobile device or simulator, go to Settings, Developer options.

2. Enable Show touches.

3. Enable Pointer location.

Refer to TouchTest Head's Up Display for ideas about how to use this optional feature

using Android's own built-in HUD-like display.

Note: TouchTest Agent must be installed on the device. Instructions to install it

are included below.

Build Prerequisites

With Gradle, no additional utility downloads or separate build steps are necessary.

Note: Periodically, plugin updates will be released, increasing the Gradle Plugin

number. The plugin number in your build.gradle file must match the latest

Gradle Plugin version.

This is because Gradle downloads the necessary JAR files, builds and the Android app,

and creates the corresponding mobile app object in the Central > Mobile Apps list.

http://cloudlink.soasta.com/t5/Knowledge-Base/TouchTest-Head-s-Up-Display/ba-p/14953

 6

Note: Eclipse developers can find additional Eclipse-related instructions in the

Appendix III section at the end of this tutorial. Gradle automates most of

the Eclipse steps that are quite involved.

 7

Using the TouchTest Gradle Plugin

With the TouchTest Gradle Plugin, Android Studio users have a simple, effective

means to quickly get TouchTest integrated into existing Android apps.

Revise Your Gradle Build Script

Make the following modifications to add the TouchTest Gradle Plugin to your project.

Because Gradle will automatically download the necessary JAR files, once these

changes are made, no separate download or build steps are required, Gradle will do

them automatically.

Note: Periodically, plugin updates will be released, increasing the Gradle Plugin

number. The plugin number in your build.gradle file must match the latest

Gradle Plugin version.

In Android Studio, Central Repository, make the following project changes.

1. In the example below, add the build.gradle line(s) that follow after the

comment: //Add the following line

buildscript {

 repositories {

 jcenter()

 }

 dependencies {

 classpath 'com.android.tools.build:gradle:1.2.3'

 //Add the following line

 classpath 'com.soasta.touchtest:touchtest-plugin:1.2'

 }

}

apply plugin: 'com.android.application'

//Add the following line

apply plugin: 'com.soasta.touchtest'

 8

repositories {

 jcenter()

}

configurations {

 soasta

}

dependencies {

 compile fileTree(dir: 'libs', include: ['*.jar'])

 compile 'com.android.support:appcompat-v7:20.+'

 soasta 'com.soasta.touchtest:touchtestdriver:1.0'

}

2. Create a new file called touchtest.properties and then add the following

properties:

 TouchTestURL=http://67.111.67.24:8080/concerto

Concerto url of CloudTest server

 TouchTestUserName=admin

CloudTest user name

 TouchTestPassword=password

CloudTest user password

 TouchTestTenant=SOASTA

Tenant in CloudTest environment

 OverwriteMobileApp=true

If a Mobile App already exists, it gets overwritten when true, left alone otherwise

 AppLaunchURL=touchtest-gradle-example://

This launch url will be used when present, a system generated launch url would be used otherwise

3. Build an Android app by doing one of the following:

 9

 Run a debug build in Android Studio.

Or, in a Terminal window, do:

gradle clean assembleDebug

 gradle clean installDebug

After performing either of the above build methods, the example application-

debug.apk is Touch Testable.

 10

Next, do the following to install the Android app to a device:

 gradle clean installDebug

Your application-debug.apk is now testable using TouchTest.

Empty project’s build.gradle

 11

Typical project’s build.gradle

 12

Inspecting the Mobile App in TouchTest® (Native or Hybrid)

Once Gradle (or for Appendix III users, Eclipse) creates the Central, Mobile App object,

you can locate an entry for the given mobile app in the Central > Mobile Apps list.

TIP: This mobile app object appears by name in the Choose Device Agent and

Mobile App box whenever end-users start a mobile app recording.

Selecting which mobile app to launch, on which test devices, is a crucial

end-user step. You will need to be familiar with its uses in order to record

and perform all of the subsequent test-building steps.

1. Verify that your Mobile App has been added by logging into TouchTest® and

looking for its entry in the Central > Mobile Apps list.

 For example, in the screenshot below both DroidFish and Zirco Browser apps

appear are listed.

 13

 Double-click the Mobile App to inspect its details.

The Mobile App detail form appears.

All of the fields shown were populated from the project, with the exception of

Supported Device Type and Minimum OS Version.

 The DroidFish mobile app detail is shown below

 14

 15

Install TouchTest Agent & Register Device to Use TouchTest

Once the mobile app is built, installed, and the corresponding mobile app exists in

SOASTA Central, use the following steps to install an agent. The TouchTest™ Agent is

responsible for launching the apps that are being tested on a given device. This

Android app runs in Android devices running 2.3.3 or later.

To get started, download the TouchTest Agent onto the mobile device and then

perform the one-time registration steps that will enable your device for use with

TouchTest.

1. From your Android device, download the TouchTest Agent Android app from

the Resources page. Tap on the downloaded TouchTestAgent.apk file (usually

found in the device's notification tray) to start Install.

2. When the installer appears, tap Install to proceed.

3. Once install completes, tap Open to launch the TouchTest Agent app on the

Android device. When you do so, the app launches and the TouchTest Agent

splash screen displays.

 16

4. Enter the TouchTest URL for TouchTest, which is your own server with

/concerto/touchtest appended:

http://<TouchTest server>/concerto/touchtest.

For example, a user with an Apple router running TouchTest Lite might connect

to:

http://10.0.1.9/concerto/touchtest

5. Tap Go. The TouchTest Agent opens the provided URL and a spinner appears

as the app auto-registers itself.

 17

6. Once the spinner disappears, enter your TouchTest user name and password

and tap Login. If the spinner hangs, tap the screen to clear it.

7. When prompted, give the TouchTest Agent a name. For example Soasta Demo

Nexus. Note that this name will be used throughout the product to refer to this

device. Once entered the device name can only be changed by an

Administrator.

 18

8. The TouchTest Agent page will appear with the status Connected for the first

time. On subsequent launches click Login to Connect and Logout to

Disconnect.

Notes: You can also download the TouchTest Agent on the /touchtest URL of the

TouchTest Environment.

 If these steps have already been performed on a given device, proceed to

Recording a TouchTest Scenario below.

 19

 20

Associating Mobile Apps with a Specific Device

Once a device is approved, use the following steps to assign one or more mobile

apps to that device.

1. In Central > Device Clouds, select the mobile device. For example, Soasta Demo

Nexus as shown below.

2. In the lower panel, click the Mobile Apps tab. If necessary, use the Maximize

button to increase the workspace.

3. Check the Mobile App(s) that you want to authorize this device to access. For

example, DroidFish and/or Zirco Browser.

4. Click Save on the lower panel toolbar before proceeding.

 21

Recording a TouchTest Scenario (All Users)

Once the TouchTest Agent profile is installed and device access approved you are

ready to record and playback your TouchTest.

 Create a new test clip within TouchTest® for your native or hybrid app.

 Click Record within the Clip Editor and then choose Mobile App Recording, specify

the Device Agent, and then the native or hybrid mobile app whose actions you

want to record.

 Perform the app actions on the mobile device to capture them in the new test clip.

These steps are described in the remainder of this tutorial.

Create a TouchTest™ Clip

Prepare your device for recording and create a new clip that will be used to perform

mobile app recording and serve as the basis for your TouchTest.

1. Open the TouchTest Agent on your mobile device, and click Login (your

previously entered username and password should be auto-populated).

Once successfully logged on, the device Status will be Connected.

 22

 Login to TouchTest on your desktop computer and select Central > Clips, and

then click New on the Central toolbar.

A new Untitled Test Clip opens in a Clip Editor tab. A Record pop-up identifies the

Record drop-down.

 Once ready, click the Record button and then select Record Mobile App.

 23

The Choose a Device Agent and Mobile App box appears.

2. Select the TouchTest Agent that you created above and also select the mobile

app you’d like to test.

Note that in the shot below mobile apps are listed for the select device agent

(i.e. Soasta Demo Nexus and Zirco Browser).

Or, alternately, Soasta Demo Nexus and Droidfish.

3. Click the Record button in the wizard once your selection is made. TouchTest

Agent will launch the selected app on the selected device.

 24

Note: If the Mobile Device Administrator (or TouchTest Lite user) has completed

the steps above to associate one or more mobile apps with the device,

those apps will appear in the Mobile App list whenever that device is

selected. If no mobile app has been defined for the selected device agent,

the Mobile App list will be empty (shown below).

TIP: For developers and admins both, ensure that the Make App TouchTestable

steps have been applied to your app and that the device agent is

associated with a mobile app. You can also click the help link in the box

to access documentation on this topic.

Pause Recording

You have the ability to pause at any moment during a recording to:

 View your app

 Eliminate unwanted actions

 Save time getting your app to a state where you want it to record actions

 Add more actions to a clip

 Correct locators in the middle of a clip

 Add more waits, outputs, or validations to an existing clip using touch locator

 Record screenshots to use in validations for all cases on a specific page

To pause at any moment, click the Pause Recording option.

 25

Recording a Droidfish Scenario (Native)

DroidFish is a typical chess application with menu options, the board pieces and

settings, a clock for each player, and so forth.

There are a number of verification possibilities:

 Verify that buttons are present

 Verify start of game that 32 pieces are visible

 Verify move list updates

 Verify clock

 Verify check mate position

 26

1. Perform some or all of the following menu actions on your mobile device to

get to the beginning of a game.

 Select and long press Game (3rd button from left at bottom of the chess

board), Goto Start of Game.

 Enter Game Mode, Select Two Players.

 27

2. Perform the following initial moves known as Fool’s Mate:

 White pawn to F4

 Black pawn to E6

 28

 White pawn to G4

 Black Queen to H4

 29

5. After reaching the checkmate position shown above, Select Game, Goto Start of

Game (e.g. using the 3rd button from the left below the chess board).

 30

While you perform the mobile app actions, the Clip Editor adds an app action to the

clip. The Info Window streams with the latest app action’s General tab shown as

actions are added.

6. In the desktop browser, click the Record button to stop recording. The

recorded clip displays the recorded actions.

Recording a Zirco Browser Scenario (Hybrid)

Zirco Browser is an Android hybrid app, meaning that it renders a web page as all or

part of its functionality. With Zirco Browser running on the device as a result of

launching it from the Clip Editor, we will now navigate to the URL for the SOASTA

web site: http://www.soasta.com/

 31

1. Perform the planned mobile app user interactions on your mobile device. For

each action you perform in the browser, TouchTest Web adds an action to the

clip.

For example, in our demo clip, which is used in the remainder of this hybrid

example, we tapped the following sequence:

a. Long press the Location field in Zirco Browser until the about:text is

selected

b. With the previous text selected, enter www.soasta.com

c. Hit the space bar so that the shortcut menu goes away

d. Tap the Go Button (the right arrow at the end of the Location field).

e. On SOASTA home, tap the Menu link.

f. Tap Solutions and then Mobile Performance testing on the sub-menu.

g. Click the SOASTA logo to return to home.

h. On the home page, tap Web performance testing.

i. Click the SOASTA logo to return to home a second time.

In the screenshot below, the Clip Editor is in Icon view and is also in Record mode

while connected to Zirco Browser.

2. Once the relevant interactions have been recorded, click the Record button

again to stop the recording.

 32

Adding an Interval Delay between Each Action (All Users)

In the following optional steps, we will add an interval delay to the test clip. This type

of delay will stretch out the time between all the recorded app actions.

Imposing delays, either using the Interval Delay setting or by inserting Delay clip

elements, can make the test more viewable during the editing phase, as well as during

test playback (when viewing the test as it plays is most desirable).

1. Click the Properties tab in the minimized sub-panel and then select the Clip tab

at the top of the pane (the Clip tab may already be visible if properties are

already open from the prior exercise).

2. In the Property Type list, click Clip Properties.

3. In the Clip Properties panel on the right, enter an Interval Delay in the given

field. For example, 2000 ms. Entering 2000 adds a two second gap between

each app action in the given test clip.

Click Save on the Clip Editor toolbar. When the Save Test Clip box appears, accept the

default name, which takes the form “Clip for <Device Name> <Mobile App Name>.

 33

Create a Composition (All Users)

With any test clip open in the Clip Editor, you are ready to create and play a simple,

new test composition using this test clip. These steps are applicable to both DroidFish

and Zirco Browser examples.

1. To create a new composition from your test clip, click the Use in Test

Composition drop-down in the upper-right corner of the Clip Editor toolbar,

and select Play in Test Composition (as shown below).

TIP: Take note of the Use in Test Composition commands and their purposes.

The Droidfish clip is shown above; however, these steps apply equally to Zirco

Browser.

 Open in Test Composition

Choose Open in Test Composition to add this clip to a new draft composition

where additional composition parameters can be set in the Composition Editor,

Edit tab before proceeding to play.

 Play in Test Composition

Choose Play in Test Composition to add this clip to a new draft composition where

it will immediately be played in the Composition, Play tab before proceeding to

edit parameters or play.

 Debug in Test Composition

Choose Debug in Test Composition to add this clip to a new draft composition

where it can be debugged in the Composition, Debugging tab before proceeding

to edit parameters or play based on debug actions.

 34

 35

Playing a Composition

If you used Play in Test Composition as suggested above, then your test clip is added

to a new draft test composition, which opens in a new Composition Editor tab and

immediately begins to play. If you clicked Open in Test Composition, you have a few

more clicks to go.

 Ensure that the TouchTest Agent status is still “Connected” on the mobile

device.

 In the Composition Editor, click Play to run the test composition a

second time.

The Composition Editor’s Status Indicator changes to “Playing,” and the mobile app is

launched on the specified mobile device(s) precisely as it was recorded.

While the test runs, the Composition Editor automatically switches to the Play tab, and

by default, the Result Details dashboard displays.

 36

Result Details (Droidfish)

The Result Details dashboard helps to discover the cause of errors in your test, if any.

While play continues results are posted in the Composition Editor, Play tab, Result

Details widget.

In the show below, a DroidFish test plays in the Composition Editor, Play tab, Result

Details dashboard.

 37

Once play completes, the final results are displayed in the Results tab (also in the

Result Details widget). If the test passed on all points, the status “Completed – With

No Errors” is clearly posted in the Result Details dashboard.

The mobile app actions performed when the clip was created are played back on the

device. Click to expand the nodes in the Navigation Tree on the left as they appear.

Result Details uses a Cover Flow (top panel to the right) to display the test

composition’s stream as it occurs.

 38

This stream is also shown in the Navigation Tree (on the left) as elements are

executed. As play continues, the focus is set to the last executed element unless user

interaction prevents it. The current container is expanded while the prior containers

are closed.

Clicking an element during play will halt this auto-focus-to-the-last-executed behavior.

To resume auto-focus once interrupted, click Jump to Now in the upper right of the

dashboard.

o Click any object in the Cover Flow at the top to center it and display its details

and play statistics in the panes below.

o Use the scrollbar to browse the flow. Select any item to show its low-level

details.

 39

Result Details (Zirco Browser)

The Result Details dashboard helps to discover the cause of errors in your test, if any.

While play continues results are posted in the Composition Editor, Play tab, Result

Details widget.

In the shot below, a Zirco Browser test plays in the Composition Editor, Play tab,

Result Details dashboard.

 40

Once play completes, the final results are displayed in the Results tab (also in the

Result Details widget). If the test passed on all points, the status “Completed – With

No Errors” is clearly posted in the Result Details dashboard.

The mobile app actions performed when the clip was created are played back on the

device. Click to expand the nodes in the Navigation Tree on the left as they appear.

Result Details uses a Cover Flow (top panel to the right) to display the test

composition’s stream as it occurs.

This stream is also shown in the Navigation Tree (on the left) as elements are

executed. As play continues, the focus is set to the last executed element unless user

interaction prevents it. The current container is expanded while the prior containers

are closed.

 41

Clicking an element during play will halt this auto-focus-to-the-last-executed behavior.

To resume auto-focus once interrupted, click Jump to Now in the upper right of the

dashboard.

o Click any object in the Cover Flow at the top to center it and display its details

and play statistics in the panes below. For example, in the shot below, App

Action11 is selected in the Cover Flow and its details are in display in the lower

panels.

o Use the scrollbar to browse the flow. Select any item to show its low-level

details.

 42

Identifying and Analyzing Common Errors

Despite the successful results above, in some cases your test may not succeed initially.

As test advocates, we are often more interested in such failures.

The way we approach them is first to identify where they occurred and then to

analyze what occurred.

Network or Communication Errors

Initial errors in a simple test like the one above are most often only simple network or

configuration errors having to do with test staging.

For example, if the Device Agent is not connected or is not responding the

Composition Editor’s Status Indicator will indicate “Test Composition failed” (shown

below).

 Click Details to display additional information in a dialog box.

Composition-wide errors such as these are clearly indicated in the General section in

the initial view of Result Details. They frequently are related the state of the Device

Agent (e.g. if the device agent is not connected when you click Play).

In some cases, the TouchTest Agent may have been started but is no longer

responding (or the device auto-lock may have been invoked). In such cases Logout

and re-login, or wake up the device if it is in auto-lock mode.

App Action and Other Errors (All Users)

TouchTest reports all failures and marks test successful or unsuccessful by the Failure

Actions set within it. Failure Actions are set stringently by default to fail the test for

any error and to show that failure in red.

 43

Result Details clearly indicates the type of test failure that has occurred in a given

case. The red "X" in the Result Details dashboard easily distinguishes failures on

specific app actions you recorded.

In the remainder of this tutorial advanced editing and test analysis is shown separately

for Droidfish (Native) and Zirco Browser (Hybrid), we will add outputs, and then verify,

or validate, that an app action’s value matches what we expect to find. This validation

becomes the basis of creating real-world functional tests.

 44

Advanced Clip Editing (Droidfish)

Now that we've played this simple Droidfish test composition successfully, and learned

how TouchTest will check the success or failure of a given composition, let’s return to

the test clip to inspect the clip elements and do some additional parameterization.

 Click the Clip Editor tab if it’s still open, or right-click the test clip in the

Composition Editor and choose Open in New Tab.

 Once the Clip Editor tab is in view, click the drop down Icon/List button on the

toolbar and then select List.

The List view is useful while clip editing, because it shows all the parameters and their

corresponding inputs in one tabular view.

 45

When additional parameters are present they are displayed to the right of the

Parameter 1 column.

Inspecting App Action Details (Droidfish)

Examine elements and properties for any App Action by selecting it in the workspace

above and then click its Gear icon to Show Info. When you do so, the Info Window

appears.

In the test clip below the recorded AppAction2 is open in the lower panel. The type of

app action, type, represents the user name entered on the SOASTA Demo app login

page.

 Locate App Action5 and expand it by clicking the arrow. Note that when

you hover the mouse over the expanded app action the Add toolbar

appears on the expanded row. This toolbar shows icons for Pre-Action

Waits, Post-Action Waits, Outputs, Validations, and Property Sets. Any click

on one of these will add the relevant form to the given app action.

 46

4. Expand the tap action (if not already expanded) to inspect the Inputs of this

action.

Because all the moves in DroidFish use the id-chessboard in this example, this means

that although the test plays successfully (even though the tapOffset values distinguish

one from another) this doesn't result in a very helpful test in terms of human

readability.

App Action Properties (Droidfish)

Additional parameters, such as Custom Properties, can be set by double-clicking an

app action to open it in the Clip Editor lower panel. Action level properties are shown

in the tree on the left.

1. Select the top-level node in the tree (as shown below)

 General, Repeat, and Custom Properties (for the action only; not for the entire

clip) tabs appear on the right.

 47

 Note that Error Handling here is set to Errors should fail the parent by default.

 Other settings, including Waits, Inputs, Outputs, Validations, and Property Sets

that were seen in the expanded list view steps above can also be set in the

lower panel by clicking that node in the tree and then performing the desired

action on the right.

1. In the Selected: App Action5 tab (or for any selected app action), familiarize

yourself with the available elements and properties.

 Inputs (Locator, Scale, Precision, Content Offset)

Locators are unique characteristics that identify a specific element or object

on a mobile device. Locators come in many forms, including links, IDs such

as those defined within CSS, and XPath expressions.

 Waits (Pre-Action Waits , Post-Action Waits)

Waits are commands that tell TouchTest not to execute an Action until a

condition is met (pre-action waits), or to not continue processing the

 48

outputs, validations and property sets of the Action until a condition is met

(post-action waits).

 Outputs

Outputs specify what is to be shown in the Result Viewer for a given Action.

Typical outputs include captureScreenshot, outputElementText, and

outputInnerHTML. A single Action can have an unlimited number of outputs,

however, as a general rule they are used sparingly.

 Validations

Validations verify some event occurred as expected and have a

corresponding Failure Action. App Action validations can range from simple

true/false conditions to more complex conditions. A single App Action can

have an unlimited number of validations. Any validation failures will be

exposed in the Results Dashboard.

 Property Sets

Property Sets give you the ability to take text or data from the app you are

testing and store it in a custom property for use in a subsequent action or

message.

SOASTA TouchTest includes three property sets, all of which have relevance

for refining and editing a selected App Action.

o Custom Properties

Custom Properties are user-defined properties that are available to all

clip elements, including Actions. Custom properties can be thought of as

backdoors that allow access to portions of the object model more easily.

o System Properties

 49

System Properties are available to all clip elements, including Actions.

SOASTA TouchTest defines system properties. For example, a test clip has

system properties such as name, repeat timing, label, and more.

o Global Properties

Global properties are defined within the Central > Global Properties List

and are “global” within the entire SOASTA TouchTest environment—and

can be used across compositions.

Adding Outputs (Droidfish)

In the following steps, we will add an output to an App Action in the test clip we

created above. This output will capture a screenshot of the test clip element as it is

executed during runtime and this screenshot will be integrated into the test results.

Additionally, we will add an output of the View Hierarchy in order to learn more about

interesting things to validate. If you’re a developer, you may already know many such

things, however, if you’re a tester who is not as familiar with an app’s code base, this

output is very useful.

1. Expand App Action5 in the Clip Editor, List view.

2. While hovering over this action, click the Outputs icon (fourth icon from the

left) on the Add toolbar.

 50

An Output form is added to the action with the default output, captureScreenshot

shown. Leave the default captureScreenshot selected.

 Leave Only if there is an error unchecked to get a screenshot in every

eventuality.

3. Click the Output icon on the Add toolbar a second time. A second form is

added to the panel.

4. In the second output, click the Command drop down and select

outputViewHierarchy. Leave the Locator field blank to get the entire view.

5. Click Save on the Clip Editor toolbar.

6. Return to the Composition Editor tab once again and click Play a second time.

 51

Inspecting Outputs (Droidfish)

1. In the Result Details dashboard, select the App Action5 in the navigation tree

or in the cover flow, locate the Outputs panel, and click its Maximize icon.

2. Scroll down in the Output panel to view the result for outputViewHierarchy.

Look for interesting things to validate.

3. Optionally, copy the content of outputViewHierarchy for DroidFish and paste it

into a separate text file.

 52

This output can provide many text elements for validations that are of great use to

a tester unfamiliar with an app's code base.

 53

Add an Image Validation (Droidfish)

1. Click the Validation button beneath the captured screenshot in the Output

panel.

2. When you do so, focus returns to the Clip Editor and a verifyScreenshot is

added to the given action (in this case, App Action5).

3. Specify a tolerance of 90 (as a percentage of image variation). If this fails when

you play the test composition, try setting it to 80, and so forth.

In this case, accept the default Failure action for this validation.

4. Save the test clip.

5. In the Composition Editor, click Play once again.

 54

Add a Text Validation (Droidfish)

Since the test clip is already open, let's also add a text validation to the same action

(App Action5). This time we will use the lower panel to do so. Ensure that your mobile

device is connected and running TouchTest Agent before proceeding with the

following steps.

1. Double click App Action5 to open it in the lower panel.

2. Locate Validations in the tree on the left.

3. Click the green Plus (+) icon on the previously added form (the

verifyScreenshot we added above).

4. Change the Command drop-down on the new validation form to

verifyElementText.

5. Click the Record button (since Droidfish text mainly appears in the console

area, we need to get the console locator).

6. Invoke Touch Locator mode by clicking the first icon to the right of the Locator

field (shown below).

TIP: For more about the Touch Locator feature, see Touch Locator for Mobile

Apps.

7. On the Android device, long press the text "1. White's move" until the blue

border is constrained to that field.

http://cloudlink.soasta.com/t5/Knowledge-Base/Touch-Locator-for-Mobile-Apps/ba-p/6652
http://cloudlink.soasta.com/t5/Knowledge-Base/Touch-Locator-for-Mobile-Apps/ba-p/6652

 55

8. When you do so, the Touch Locator box appears with the available locators.

9. Click the Up Arrow icon to accept these locators and then click Record in the

Clip Editor to stop the session. Before proceeding, delete any out-of-sequence

app actions that you inadvertently recorded while in Touch Locator mode (e.g.

since App Action5 was selected here, delete anything between it and App

Action6).

10. In the Clip Editor, inspect the verifyElementText form in App Action5.

The locator field is now populated with the locator of the field whose text we want to

verify. Optionally, click the Locator drop-down and note that all of the locators that

appeared on the device for the given field have been populated but only the first is

used. Should the validation fail, you can try one of the other locators. Also, note that

we didn't change the locator for the app action itself but rather added a locator to

verifyElementText solely.

 56

11. In the Match field, leave Exact Match set and enter 1. White's move.

TIP: You can also verify on partial strings using regex or glob. Refer to

Validations for Browser or App Actions for more about matching.

12. Save the test clip.

13. In the Composition Editor, click Play once again.

http://cloudlink.soasta.com/t5/Knowledge-Base/Validations-for-Browser-or-App-Actions/ba-p/98

 57

Analyzing Validations in Results (Droidfish)

Now that we’ve added validations on an image and text, we will learn how to examine

those validations on their merits. In the best-case scenario, the parameters added in

Advanced Clip Editing work without a hitch. We can easily verify the status of our

parameters in Result Details.

1. In Result Details, select the clip element that had the validation. For example,

App Action5 (as shown above and below).

 58

2. Inspect the information on the Summary tab for the selection. In the result

above, the validation on App Action5 passed in the result shown.

3. Click verifyScreenshot in the Waits and Validations section to bring it into focus

in the Output section.

Note: Since we didn’t check Only if there is an error in the Output form a shot

of the success is included in this result for the given app action.

4. Click the Events list tab for the given selection to view action-related events,

including validations. Click the Details arrow to inspect any event’s details.

 59

5. Click the Output section's Maximize icon to view the results for the

verifyScreenshot and verifyElementText on this action in full.

Click between the Expected and Observed tabs to see the comparison images.

 In this case the verifyScreenshot passed. If yours didn't pass, try lowering the

tolerance (from 90 to 80 and beyond).

 In this case, the verifyElementText also passed.

6. Click the Events List tab in the middle panel of Result Details to view the

complete text stream of events for the given selection. Note the validation

relevant headings.

 60

 61

Advanced Clip Editing (Zirco Browser)

Now that we've played this simple Zirco Browser test composition successfully, and

learned how TouchTest will check the success or failure of a given composition, let’s

return to the test clip to inspect the clip elements and do some additional

parameterization.

 Click the Clip Editor tab if it’s still open, or right-click the test clip in the

Composition Editor and choose Open in New Tab.

 Once the Clip Editor tab is in view, click the drop down Icon/List button on the

toolbar and then select List.

The List view is useful while clip editing, because it shows all the parameters and their

corresponding inputs in one tabular view.

 62

Collapse and expand the App Action to access or hide its details; hover the mouse

over a row to display the Add toolbar, which is used to add Pre- and Post-Action

Waits, Outputs, Validations, and Property Sets. The expanded action consists of the

action inputs, built-in waits associated with the action, and any accessors manually

added by the user via the Add toolbar (or, via the lower panel Action Editor).

For a collapsed row, additional information is also displayed to the right of the

Parameter 1 column.

 63

Inspecting App Action Details (Zirco Browser)

Examine elements and properties for any App Action in the workspace by expanding.

When you do so, the Info Window appears.

In the test clip below the recorded App Action4 is expanded to show its details. The

type of app action, webClick, represents the first action in the clip that renders a web

page. This is the archetypal "hybrid" app action. In some cases, its parameter is an

Xpath (just as it would be for a browser action in a desktop functional test). In other

cases, a classname or even a TouchTestID will appear here.

 Locate App Action7 and click its Gear icon to pop out the Info Window.

5. Expand the webClick under App Action4. Its locator is an Xpath representing

the SOASTA Logo.

 64

App Action Properties (Zirco Browser)

Additional parameters, such as Custom Properties, can be set by double-clicking an

app action to open it in the Clip Editor lower panel. Action level properties are shown

in the tree on the left.

2. Select the top-level node in the tree (as shown below)

 General, Repeat, and Custom Properties (for the action only; not for the entire

clip) tabs appear on the right. Note that Error Handling here is set to Errors

should fail the parent by default.

 Other settings, including Waits, Inputs, Outputs, Validations, and Property Sets

that were seen in the expanded list view steps above can also be set in the

lower panel by clicking that node in the tree and then performing the desired

action on the right.

Adding Outputs (Zirco Browser)

In the following steps, we will add an output to an App Action in the test clip we

created above. This output will capture a screenshot of the test clip element as it is

executed during runtime and this screenshot will be integrated into the test results.

Additionally, we will add an output of the View Hierarchy in order to learn more about

interesting things to validate. If you’re a developer, you may already know many such

 65

things, however, if you’re a tester who is not as familiar with an app’s code base, this

output is very useful.

1. Click the Add toolbar, Outputs icon for App Action1 to add the new output.

2. Select outputViewHierarchy in the Command drop down.

3. Leave the Locator field blank. This will return the entire hierarchy.

4. Optionally, also add an outputXMLHierarchy on App Action1.

5. Click the Add toolbar, Outputs icon for App Action4 to add an output.

6. Leave the default, captureScreenshot, set on App Action4.

 Leave Only if there is an error unchecked to get a screenshot in every

eventuality.

7. Optionally, also add an outputWebHtmlSource on App Action4. This will

provide a resource for interesting text to validate.

 66

8. Click Save on the Clip Editor toolbar.

9. Return to the Composition Editor tab once again and click Play a second time.

 67

Inspecting Outputs (Zirco Browser)

Now that we've added outputs to our Zirco Browser clip, let's check the Result Details

dashboard for them.

4. In the Result Details dashboard, select the App Action1 in the navigation tree

or in the cover flow, locate the Outputs panel, and click its Maximize icon.

5. In the Output panel, locate the outputViewHierarchy. Look for interesting things

to validate in the text that you find.

Optionally, copy the text from this output into a separate text file to use as a

source for interesting things to validate in the Zirco Browser app (as opposed

to its web content). The View Hierarchy can provide many text elements for

validation and property set creation that are of great use to a tester unfamiliar

with an app's code base.

 68

6. If you also added outputXMLHierarchy, locate it as well.

10. Finally, select App Action4 in the Result Details dashboard, and once again

locate the Outputs section.

 69

Expand it to view the screenshot set on this action.

 70

7. If you added outputWebHtmlSource, locate it in the Outputs section as well.

Add an Image Validation (Zirco Browser)

1. Click the Add Validation button beneath the captured screenshot in the Output

panel.

2. When you do so, focus returns to the Clip Editor and a verifyScreenshot is

added to the action (in this case, App Action4).

3. Leave Locator blank.

4. Specify a tolerance of 90 (as a percentage of image variation). If this fails when

you play the test composition, try setting it to 80, and so forth.

5. In this case, accept the default Failure action for this validation.

6. Save the test clip.

 71

7. In the Composition Editor, click Play once again.

Adding an HTML Validation (Zirco Browser)

Since the test clip is already open, let's also add a validation on text from an HTML

page to the same action (App Action4). This time we will use the lower panel to do

so. Ensure that your mobile device is connected and running TouchTest Agent before

proceeding with the following steps.

1. Double click App Action4 to open it in the lower panel.

2. Locate Validations in the tree on the left.

3. Click the green Plus (+) icon on the previously added form (the

verifyScreenshot we added above).

4. Change the Command drop-down on the new validation form to

verifyWebHtmlSource.

5. Change the Match field to Glob and then enter *Web performance testing*.

1. In this case, accept the default Failure action for this validation Be recorded

only.

2. Save the test clip.

3. In the Composition Editor, click Play once again.

 72

Analyzing Validations in Results (Zirco Browser)

Now that we’ve added validations on an image, and on text in an HTML page, we will

learn how to examine those validations on their merits. In the best-case scenario, the

parameters added in Advanced Clip Editing work without a hitch. We can easily verify

the status of our parameters in Result Details.

 73

7. In Result Details, select the clip element that had the validation. For example,

App Action4 (as shown below).

8. Inspect the information on the Summary tab for the selection. In the result

above, both validations on App Action4 passed in the result shown.

 74

9. Click verifyScreenshot in the Waits and Validations section to bring it into focus

in the Output section.

Note: Since we didn’t check Only if there is an error in the Output form a shot

of the success is included in this result for the given app action.

1. Click verifyWebHtmlSource in the Waits and Validations section to bring it into

focus in the Output section.

2. Click the Events list tab for the given selection to view action-related events,

including validations. Click the Details arrow to inspect any event’s details.

 75

3. Click the Output section's Maximize icon to view the verifyScreenshot in full.

Click between the Expected and Observed tabs to see the comparison images.

4. Click the Events List tab in the middle panel of Result Details to view the

complete text stream of events for the given selection. Note the validation

relevant headings.

 I

Appendix I: Using TouchTestIDs in Your Project Source Code

TouchTestIDs (TTIDs) are provided as a means to make your tests more user-friendly

and readable. For developers, SOASTA TouchTest also provides the ability to define

explicit mobile app locators, known as TouchTestIDs (TTIDs) as an integral part of

touch-testing. Once implemented, TouchTest gives preference to recording the

TouchTestID as the default locator.

Minimally, using TouchTestIDs requires the following source code modifications for

both iOS and Android projects:

1) An import statement in the view where TTIDs will be used (e.g. using the OS-

specific syntax required).

2) In any given view, call setTouchTestId and assign a string parameter to each view

that needs one.

Once TTIDs are added TouchTest gives preference to recording the TouchTestID as

the default locator. The use of touchTestId in Locators is described below.

Adding TouchTestIDs to an Android (Native) App

For Android developers, implementing TTIDs is a straightforward two-step process for

each view where a TTID is desired. The use of touchTestId in Locators is described

below.

1. Identify the source file where the view is initialized.

2. For each view that will include TouchTestIDs, initialize the view using:

Import com.soasta.android.touchtest.TouchTestDriver;

3. Next, call the setTouchTestId method on each view that will be located.

For example,

TouchTestDriver.getInstance().setTouchTestId(aView, "aTouchTestId");

The string parameter provided here (e.g. aTouchTestId) will be used to locate the

element.

 II

Note: There is no built in support for Conditional Compilation in Java. Users of

Ant, maven, and other tools should still use the TouchTestId conditionally,

in such a manner that guarantees it is not part of code that gets

submitted to any store.

For example, you could write an Ant build.xml that runs a preprocessor

before compile. A good Ant trick along similar lines can be found here.

https://weblogs.java.net/blog/schaefa/archive/2005/01/how_to_do_condi.html

 III

Adding TouchTestIDs to an Android (Hybrid) App

For HTML-based hybrid apps, as well as for web sites recorded with TouchTest Web

for Android, TouchTest and TouchTest Web utilize the HTML id attribute as the

TouchTest ID.

In the following HTML code, the id="hello" will be recorded as the TouchTestID:

<input type="submit" value="Hello!" onClick="buttonClicked()’’ id=‘‘hello">

 IV

Appendix II: Adding a Mobile App Manually (Mobile

Administrator)

In cases where manual project integration has been used, it will be necessary to

manually add a mobile app to TouchTest®. These instructions apply equally to native

and hybrid apps. As noted elsewhere, each TouchTest Lite user is also a Mobile

Administrator for that Lite instance.

1. Select Central > Mobile Apps and then click New. The Mobile App form

appears.

2. Enter the app name as it will appear in the drop-down for user selection.

Generally, this will also be the Project name.

3. Optionally, enter a description and an app version number. Version number will

generally match Project details.

4. Select Android as the OS. For this release, TouchTest supports Android 2.3.3

version or later.

5. Provide the launch URL. Users must add this application ID to their mobile app

AndroidManifest.xml file. Without doing that, testing will not happen.

 V

6. Optionally, import an app image for your mobile app to visually represent the

correlation of TouchTest™ Agent with your app.

Supported image types include JPEG, PNG, and GIF. Images can be pre-edited

to the requisite 57 pixels wide by 57 pixels tall. Images that are not cropped

will be shrunk to fit within the requisite dimensions.

7. Click Save to create this mobile app object in TouchTest

Appendix III: Using Eclipse (Eclipse Developer Only)

This appendix preserves Eclipse development instructions that have been superceded

by Gradle and presumes that the Android developer has a basic familiarity with the

Eclipse development environment and has the following configuration:

 Eclipse (version 3.6 or later) with Android SDK version 10 or later installed along

with the Eclipse plugin.

 Java 6 is installed.

Installing the ADT for Mac OS X

o To download Eclipse for Mac OS X, click here. Most users download

Eclipse Classic.

o For SDK install and instructions, click here.

 Note that an SDK must be downloaded and enabled via the SDK

Manager. For SDK Manager help, click here.

Installing the ADT for Windows

o Download the ADT Bundle, which includes the Eclipse Android IDE, here.

Once the page is loaded, click "Download for Other Platforms" at the

bottom of the page and select the appropriate Windows version of the

ADT Bundle to download (e.g. you'll need to know if your Windows

system is 32-bit of 64-bit).

 Also note, that if you don't already have a Java Development Kit

installed on your Windows instance, you'll need to install it before

you start the ADT Bundle install. Click here to get the JDK and

then select either the Windows x86 or x64 version.

o With the JDK already installed, Windows users can proceed using the

installation instructions here.

http://www.eclipse.org/downloads/
https://developer.android.com/sdk/installing/index.html
http://developer.android.com/tools/help/sdk-manager.html
http://developer.android.com/sdk/index.html?utm_source=weibolife
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://developer.android.com/sdk/installing/bundle.html

o For help setting up a virtual device, click here.

 The Minimum Android Version supported for use with TouchTest™ is 2.3.3

(Gingerbread).

 Install the ADT Plugin for Eclipse here (or do so via the Eclipse user interface).

 The git executable file, for either Mac OS X or Windows, is used to retrieve the

Android example projects used in this tutorial. GitHub can also be used.

Windows git users should note that MakeAppTouchTestable will run from the

Windows command prompt while Windows git versions (such as this one) offer

both a Git Bash or a Windows Command Prompt

 The native app example, DroidFish, uses the Android NDK and so instructions

are provided for installing it, although this is not a requirement of TouchTest

itself, and users following only the Zirco Browser example can ignore NDK

entirely.

 Unless you have a different Android native mobile app you’d like to use with

this tutorial, install the Android NDK toolset into your Mac OS X or Windows

Eclipse environment before proceeding. Additional configuration instructions

are provided below at the appropriate time.

https://developer.android.com/tools/devices/index.html
http://developer.android.com/sdk/installing/installing-adt.html
http://git-scm.com/download/win
http://developer.android.com/tools/sdk/ndk/index.html

Downloading MakeAppTouchTestable Software (Eclipse Developer

Only)

As noted above, your app can be made "touch-testable" via the Gradle Plugin or by

using the MATT utility.

1. For Eclipse or any other build system, download and unarchive the

MakeAppTouchTestable Utility from the TouchTest Resources page.

Note: This archive contains the necessary drivers for both the manual and

automatic methods (using Eclipse) described below.

About the Eclipse Examples

Two Eclipse examples are presented in this tutorial in parallel, the first for native apps

and the other for hybrid apps.

 To learn how to test a native Android mobile app, follow the DroidFish

examples in this tutorial.

 For native Android apps, we'll set up the DroidFish sample app to use with a

TouchTest test clip. We will use git to retrieve the necessary DroidFish source

code. If you will not be using hybrid apps, skip all the sections pertaining to

Zirco Browser.

To learn how to test a hybrid Android mobile app, follow the Zirco Browser example.

 For hybrid Android apps, we'll set up the Zirco Browser sample app to use with

a TouchTest Hybrid test clip. If you will not be using native apps, skip all the

sections pertaining to DroidFish.

If you'd like to test both types, simply follow all of the instructions in this tutorial.

Note: Sections intended for developers only are marked so, although in some cases

testers may also wish to follow them. Other sections are for general use (but may

require assistance from someone else on your team, for example, when a developer or

other tester is in charge of getting the app to test onto your mobile device so that

you can focus on creating tests).

Importing the DroidFish Project in Eclipse

Use the following instructions for both Mac OS X and Windows.

1. Launch Eclipse and right-click in the Package Explorer to choose Import.

2. In the Import box, choose General > Import Existing Android Code into

Workspace.

3. Select the root directory for the DroidFish (or other project).

The Mac OS X example is shown above, while the Windows example is shown below.

The environment is slightly different in appearance but includes the same details.

4. Click Finish to complete the import. The DroidFish project is added to the

Package Explorer list in Eclipse.

Configuring the NDK Builder (Droidfish Only)

As noted above, Droidfish requires the NDK toolset in order to facilitate its use of

native-code components. As a result, after our import we have a project that will not

yet compile. Use the following steps to employ the NDK toolset.

1. Select the Droidfish project in the Package Explorer and then right-click to

choose Properties.

2. Select Builders in the Properties list on the left and then select Native_Builder.

3. With Native_Builder selected, click the Edit button.

4. In the Edit Configuration box, Location field enter the path to the OS-specific

NDK toolset’s ndk-build executable.

Windows users will specify the location of the ndk-build.cmd file, which is found in

the same location as the Mac version (e.g. in the download folder as shown below).

In the Mac OS X example below, this is "/Users/<user>/Documents/Demo/android-

ndk-r8b/ndk-build." For Windows users, the path will be the same with the .cmd

extension added.

5. In the Working Directory, specify the location of Droidfish (same as noted

above).

6. Click OK to accept the new builder configuration.

Setting Up the Droidfish Project in Eclipse (Native App Developer)

Next, we will retrieve the native app, Droidfish, for use as an example app. After it is

downloaded, we will then add TouchTest™ capabilities to it via the

MakeAppTouchTestable utility.

You can use GitHub to download the DroidFish app’s source code here, or use the git

command from within either Terminal or the Windows Command Prompt using the

following syntax (and presuming that git is in the path):

git clone https://github.com/elitecoder/droidfishchess_android

1. Once downloaded, inspect the DroidFish project’s components prior to running

the utility. The unarchived project folders are shown below.

In our Mac OS X example, shown above, the DroidFish project is located in

~/Documents/Demo/droidfishchess_android.

https://github.com/elitecoder/droidfishchess_android
https://github.com/elitecoder/droidfishchess_android

In our Windows example, shown below, the DroidFish project is located in

Users\<user>\Documents\droidfishchess_android.

Note your own path for use in the next section as well as in the

MakeAppTouchTestable section below.

Importing the DroidFish Project in Eclipse

Use the following instructions for both Mac OS X and Windows.

5. Launch Eclipse and right-click in the Package Explorer to choose Import.

6. In the Import box, choose General > Import Existing Android Code into

Workspace.

7. Select the root directory for the DroidFish (or other project).

The Mac OS X example is shown above, while the Windows example is shown below.

The environment is slightly different in appearance but includes the same details.

8. Click Finish to complete the import. The DroidFish project is added to the

Package Explorer list in Eclipse.

Configuring the NDK Builder (Droidfish Only)

As noted above, Droidfish requires the NDK toolset in order to facilitate its use of

native-code components. As a result, after our import we have a project that will not

yet compile. Use the following steps to employ the NDK toolset.

7. Select the Droidfish project in the Package Explorer and then right-click to

choose Properties.

8. Select Builders in the Properties list on the left and then select Native_Builder.

9. With Native_Builder selected, click the Edit button.

10. In the Edit Configuration box, Location field enter the path to the OS-specific

NDK toolset’s ndk-build executable.

Windows users will specify the location of the ndk-build.cmd file, which is found in

the same location as the Mac version (e.g. in the download folder as shown below).

In the Mac OS X example below, this is "/Users/<user>/Documents/Demo/android-

ndk-r8b/ndk-build." For Windows users, the path will be the same with the .cmd

extension added.

11. In the Working Directory, specify the location of Droidfish (same as noted

above).

12. Click OK to accept the new builder configuration.

Setting Up the Zirco Browser Project (Hybrid App Developer)

The Zirco Browser is presented here as an example of TouchTest Hybrid testing. In the

following steps, we will retrieve the hybrid app example app, Zirco Browser, and then

use the MakeAppTouchTestable utility to add TouchTest™ Hybrid capabilities to it.

After which, the app will be deployed to an Android device.

1. On the command line, change to the folder where you'd like the source code

to live. Use git (or GitHub) to download the Zirco Browser app’s source:

git clone https://github.com/elitecoder/zircobrowser_android

2. Once downloaded, inspect the project’s components prior to running the MATT

utility on it (if you are going to use MATT's apk parameter to instrument the

APK file you can still do this inspection although the project itself will not be

modified using that method). The unarchived project folders are shown below.

In our Mac OS X example, shown above, the Zirco Browser project is located in

~/Documents/Demo/zircobrowser_android. If your project is in Windows, use the

syntax appropriate for the context. In either case, note your path for use in the next

section as well as in the MakeAppTouchTestable section below.

Importing the Zirco Browser Project

1. Launch Eclipse and right-click in the Package Explorer to choose Import.

3. In the Import box, choose General > Import Existing Android Code into

Workspace.

4. Click Next.

5. Select the root directory for the Zirco Browser (or other project).

6. Click Finish to complete the import. The zirco-browser project is added to the

Package Explorer list in Eclipse. The project begins to compile.

You can use "Run As…" to install the application to your Android device.

2. Locate and open the AndroidManifest.xml file with the Android Common XML

Editor and find the following line:

<uses-sdk android:minSdkVersion="7" android:targetSdkVersion="8" />

Change both values to 10 as shown below. If it is already "10" leave it as is.

3. Close the project and exit Eclipse.

Using the MakeAppTouchTestable Utility (Developer Only)

As noted in the prerequisites above, TouchTest™ uses the MakeAppTouchTestable

Utility, which is downloaded from the TouchTest, Welcome page, to modify the

Android project or the compiled APK.

Note: The TouchTest user specified to run the MakeAppTouchTestable utility

must be a user with Mobile Device Administrator rights. TouchTest Lite

users have admin rights for the given device on their own instance.

Static vs. Dynamic Instrumentation

The MATT utility supports two instrumentation methods: static and dynamic.

 Dynamic instrumentation occurs when MATT instruments a compiled file (i.e.

an APK file). This method requires that you compile your Android project

first to create an APK, after which it can be instrumented using SOASTA

51.07 or later (TouchTest 7040.58). Dynamic instrumentation is available for

all supported Android versions.

 Static instrumentation occurs when MATT instruments an Android project.

Static instrumentation is available in all TouchTest releases and for all

supported Android versions.

Making the DroidFish APK TouchTestable (Native Developer Only)

This section presumes that the APK file has already been compiled. Do so at this time

(without applying the MATT command) to proceed using the following steps. The Java

memory parameter is used prior to MATT.

1. On the command line, navigate to the MakeAppTouchTestable folder you

created above.

 For example, in Windows Command Prompt,
cd C:\Documents\MakeAppTouchTestable

 For example in Mac OS X Terminal,
cd ~/Documents/Demo/MakeAppTouchTestable

2. Next, run the utility on the DroidFish APK using your own modified version of

the MakeAppTouchTestable command below

For Mac OS X:

java -Xmx1g -jar MakeAppTouchTestable.jar -apk <Android APK> -androidsdk
<Android SDK Path> -url <TouchTest URL> -username <TouchTest user name> -password
<TouchTest password>

For Windows:

C:\Users\<user>\MakeAppTouchTestable>java -Xmx1g -jar MakeAppTouchTestable.jar
-apk <Android APK> -androidsdk <Android SDK Path> -url <TouchTest URL> -username
<TouchTest user name> -password <TouchTest password>

TIP: Copy the above command into a text file to build your own command.

Where:

 <Android APK> is the path to the APK file. As we noted above, our

example path under Mac OS X was:

~/Documents/Demo/droidfishchess_android

 <Android SDK Path> is the path to the Android SDK used to compile

the APK file.

 <TouchTest URL> is the TouchTest Lite or TouchTest instance in use.

 Using the Java parameter -Xmx1g prior to jar allocates the necessary

memory to complete the operation. Otherwise, the MATT command may

throw an exception.

Here is a complete Mac OS X example:

java -Xmx1g -jar MakeAppTouchTestable.jar -apk
~/Documents/Demo/droidfishchess_android/bin/Droidfish.apk -androidsdk
~/Development/android-sdk-macosx -url http://10.0.1.9/concerto -username

SOASTA_DOC -password secret

Here is a complete Windows example:

C:\Users\<user>\MakeAppTouchTestable>java -Xmx1g -jar MakeAppTouchTestable.jar -
apk C:\Documents\Demo\droidfishchess_android\bin\Droidfish.apk -androidsdk
C:\Development\android-sdk-macosx -url http://10.0.1.9/concerto -username
SOASTA_DOC -password secret -Xmx1g

 Optionally, you can manually specify an additional launchurl flag, being sure

to specify the correct URL syntax (shown below).

This argument is used in the TouchTest repository to represent your mobile app

and in the compiled app. For Eclipse projects, this setting originates in the

AndroidManifest.xml. Whether you create the TouchTestable Android app using
the project or apk MATT parameter—this launchurl must match for testing to
succeed.

For example,

-launchURL ‘‘Droidfish://key1=value1&key2=value2&key3=value3’’

MakeAppTouchTestable will configure your project, and create a new Mobile App

object in the TouchTest server repository. The Mobile App object created will have the

auto-created URL Scheme in its Launch URL field. The following text output appears in

Terminal:

Mobile App Object "Droidfish" representing your Application "Droidfish" has

been created in TouchTest Repository.

The Mobile App object created will have the auto-created scheme found in tiapp.xml

unless otherwise specified.

You will see a message similar to the following:

Will create the launch url: touchtest-e4eedd67-4ea9-495a-be57-2d34eaafc510://

Making the DroidFish Project TouchTestable (Native Developer Only)

1. On the command line, navigate to the MakeAppTouchTestable folder you

created above.

 For example, in Windows Command Prompt,
cd C:\Documents\MakeAppTouchTestable

 For example in Mac OS X Terminal,
cd ~/Documents/Demo/MakeAppTouchTestable

2. Next, run the utility on the DroidFish project using your own modified version

of the MakeAppTouchTestable command below

For Mac OS X:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -project <Android

project directory> -url <TouchTest URL> -username <TouchTest user name>

-password <TouchTest password>

For Windows:

C:\Users\<user>\MakeAppTouchTestable>sh
MakeAppTouchTestable/bin/MakeAppTouchTestable
-project <Android project directory> -url <TouchTest URL> -username <TouchTest
user name> -password <TouchTest password>

TIP: Copy the above command into a text file to build your own command.

Where:

 <Android project file> is the path to the root folder of your project. As

we noted above, our example path under Mac OS X was:

~/Documents/Demo/droidfishchess_android

 <TouchTest URL> is the TouchTest Lite or TouchTest instance in use. In

the example below, we show a TouchTest Lite instance on a LAN with an

Apple router, 10.0.1.9, but your TouchTest server may have a domain or

IP address prior to /concerto.

Here is a complete Mac OS X example:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -project

~/Documents/Demo/droidfishchess_android

-url http://10.0.1.9/concerto -username SOASTA_DOC -password secret

Here is a complete Windows example:

C:\Users\<user>\MakeAppTouchTestable>sh

MakeAppTouchTestable/bin/MakeAppTouchTestable

-project C:\Documents\Demo\droidfishchess_android -url
http://10.0.1.9/concerto -username SOASTA_DOC -password secret

 Optionally, you can manually specify an additional launchurl flag, being sure

to specify the correct URL syntax (shown below).

This argument is used in the TouchTest repository to represent your mobile app

and in the compiled app. For Eclipse projects, this setting originates in the

AndroidManifest.xml. The launch URL in the compiled app and in the TouchTest,
Mobile App, launch URL field must match for testing to occur.

For example,

-launchURL ‘‘Droidfish://key1=value1&key2=value2&key3=value3’’

MakeAppTouchTestable will configure your project, and create a new Mobile App

object in the TouchTest server repository. The Mobile App object created will have the

auto-created URL Scheme in its Launch URL field. The following text output appears in

Terminal:

Mobile App Object "Droidfish" representing your Application "Droidfish" has

been created in TouchTest Repository.

The Mobile App object created will have the auto-created scheme found in tiapp.xml

unless otherwise specified. You will see a message similar to the following:

Will create the launch url: touchtest-e4eedd67-4ea9-495a-be57-2d34eaafc510://

IMPORTANT: In the next section, we inspect the project changes and then re-run

the sample app using the steps in Install to the Device. Minimally,

you must re-run the app after using the MakeAppTouchTestable

utility.

Making the Zirco Browser APK TouchTestable (Hybrid Developer Only)

This section presumes that the APK file has already been compiled. Do so at this time

(without applying the MATT command) to proceed using the following steps.

1. On the command line, navigate to the MakeAppTouchTestable folder you

created above.

 For example, in Windows Command Prompt,
cd C:\Documents\MakeAppTouchTestable

 For example, in Mac OS X Terminal, cd ~/Documents/Demo/MakeAppTouchTestable

2. Next, run the utility on the Zirco Browser APK using your own modified version

of the MakeAppTouchTestable command below:

For Mac OS X:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -apk <Android APK> -

androidsdk <Android SDK Path> -url <TouchTest URL> -username <TouchTest

user name> -password <TouchTest password>

For Windows:

C:\Users\<user>\MakeAppTouchTestable>sh
MakeAppTouchTestable/bin/MakeAppTouchTestable

-apk <Android APK> -androidsdk <Android SDK Path> -url <TouchTest URL> -username
<TouchTest user name> -password <TouchTest password>

TIP: Copy the above command into a text or other scratch file to begin making

your own command.

where:

 <Android APK> is the path to the APK. For example:

~/Documents/Demo/zircobrowser_android/bin/zirco-browser.apk

 <Android SDK Path> is the path to the Android SDK used to compile the

APK file.

 <TouchTest URL> is the TouchTest Lite or TouchTest server that you use.

So, the domain or IP address prior to the "/concerto/touchtest" string is

what we mean by TouchTest URL. Here is a complete Mac OS X example:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -apk

~/Documents/Demo/zircobrowser_android/bin/zirco-browser.apk -url

http://10.0.1.9/concerto -username SOASTA_DOC -password secret

Here is a complete Windows example:

C:\Users\<user>\MakeAppTouchTestable>sh
MakeAppTouchTestable/bin/MakeAppTouchTestable
-apk C:\Documents\Demo\zircobrowser_android\bin\zirco-browser.apk -androidsdk

C:\Development\android-sdk-macosx -url http://10.0.1.9/concerto -username
SOASTA_DOC -password secret

 Advanced users can also manually specify an additional launchurl flag, using

the URL syntax shown below.

For example, you can impose the following convention, including optional

arguments:

-launchURL ‘‘ZircoBrowser://key1=value1&key2=value2&key3=value3’’

The launch URL is used by TouchTest to open your mobile app via the

corresponding device agent. The launch URL in the compiled app and in

TouchTest's Central > Mobile App, Launch URL field must match for testing to
succeed.

3. Once ready, run the modified command in Terminal from the

MakeAppTouchTestable folder. When you do so, MakeAppTouchTestable will

configure your APK, and create a new Mobile App object in the TouchTest

server repository. The Mobile App object created will have the auto-created

URL Scheme in its Launch URL field. The following text output appears in

Terminal:

Mobile App Object representing your Application "Zirco Browser" has been

created in TouchTest Repository.

The Mobile App object created will have the auto-created scheme found in

tiapp.xml unless otherwise specified. You will see a message similar to the

following:

Will create the launch url: touchtest-e4eedd67-4ea9-495a-be57-

2d34eaafc510://

MakeAppTouchTestable will configure your project, and create a new Mobile

App object in the TouchTest server repository. The Mobile App object created

will have the auto-created URL Scheme in its Launch URL field. You will see a

message similar to the following:

Mobile App Object "Zirco Browser" representing your Application "Zirco

Browser" has been created in TouchTest Repository.

Making the Zirco Browser Project TouchTestable (Hybrid Developer Only)

1. On the command line, navigate to the MakeAppTouchTestable folder you

created above.

 For example, in Windows Command Prompt,
cd C:\Documents\MakeAppTouchTestable

 For example, in Mac OS X Terminal, cd ~/Documents/Demo/MakeAppTouchTestable

2. Next, run the utility on the Zirco Browser project using your own modified

version of the MakeAppTouchTestable command below:

For Mac OS X:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -project <Android

project directory> -url <TouchTest URL> -username <TouchTest user name>

-password <TouchTest password>

For Windows:

C:\Users\<user>\MakeAppTouchTestable>sh

MakeAppTouchTestable/bin/MakeAppTouchTestable

-project <Android project directory> -url <TouchTest URL> -username
<TouchTest user name> -password <TouchTest password>

TIP: Copy the above command into a text or other scratch file to begin making

your own command.

where:

 <Android project file> is the path to the root folder of your project. As

we noted above, our example path was:

~/Documents/Demo/zircobrowser_android

 <TouchTest URL> is the TouchTest Lite or TouchTest server that you use.

So, the domain or IP address prior to the "/concerto/touchtest" string is

what we mean by TouchTest URL.

In the example below, we show an IP address that was assigned for a

given TouchTest Lite instance but it could be any other TouchTest URL

where you have rights.

Here is a complete Mac OS X example:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -project

~/Documents/Demo/zircobrowser_android -url http://10.0.1.9/concerto -

username SOASTA_DOC -password secret

Here is a complete Windows example:

C:\Users\<user>\MakeAppTouchTestable>java --jar MakeAppTouchTestable.jar -

project C:\Documents\Demo\zircobrowser_android -url

http://10.0.1.9/concerto -username SOASTA_DOC -password secret

 Advanced users can also manually specify an additional launchurl flag, using

the URL syntax shown below.

For example, you can impose the following convention, including optional

arguments:

-launchURL ‘‘ZircoBrowser://key1=value1&key2=value2&key3=value3’’

The launch URL is used by TouchTest to open your mobile app via the

corresponding device agent. For Eclipse projects, this setting originates in the

AndroidManifest.xml. The launch URL in the compiled app and in TouchTest's
Central > Mobile App, Launch URL field must match for testing to occur.

3. Once ready, run the modified command in Terminal from the

MakeAppTouchTestable folder. When you do so, MakeAppTouchTestable will

configure your project, and create a new Mobile App object in the TouchTest

server repository. The Mobile App object created will have the auto-created

URL Scheme in its Launch URL field. The following text output appears in

Terminal:

Mobile App Object representing your Application "Zirco Browser" has been

created in TouchTest Repository.

The Mobile App object created will have the auto-created scheme found in

tiapp.xml unless otherwise specified. You will see a message similar to the

following:

Will create the launch url: touchtest-e4eedd67-4ea9-495a-be57-

2d34eaafc510://

MakeAppTouchTestable will configure your project, and create a new Mobile

App object in the TouchTest server repository. The Mobile App object created

will have the auto-created URL Scheme in its Launch URL field. You will see a

message similar to the following:

Mobile App Object "Zirco Browser" representing your Application "Zirco

Browser" has been created in TouchTest Repository.

IMPORTANT: In the next section, we will inspect the project changes and then re-

run the sample app using the steps in Install to the Device. Minimally,

you must re-compile the APK after using the MakeAppTouchTestable

utility.

Inspecting a TouchTestable Project (Native or Hybrid using project method)

If we are using the MATT project parameter, we can visually inspect changes to the

project in order to satisfy our curiosity, although this is not strictly necessary. If you

used the MATT apk parameter skip ahead to the next section.

1. For either project, inspect the original source folder via Finder.

 The contents of the folder where the droidfishchess_android project was

retrieved using git clone are shown below.

 The contents of the folder where the zircobrowser_android project was

retrieved using git are shown below.

Note that in either project, the TouchTest Driver folder has been added.

2. In Eclipse, select the top-level project folder and choose Refresh.

Note that the project includes the TouchTestDriver folder.

3. In Eclipse, select the Project menu, Build Project command.

4. Expand the TouchTestDriver folder and its subfolder (JarsForWeaving).

5. Open the AndroidManifest.xml file in XML mode (by clicking the

AndroidManifest.xml tab in the workspace).

Note that the manifest now includes a new intent-filter section that includes the

launchURL data value in android:scheme.

6. Scroll down to the end of the AndroidManifest.xml.

Note the new service statement referencing TouchTest in android:exported.

7. In Eclipse's Project Explorer, right-click the ZircoBrowser folder, and then in the

Properties box, select Builders. Ensure that the TouchTest Post-Compile box is

checked.

8. Now that the project is verified TouchTestable, send it to the device or

simulator a second time using Run.

Install using Eclipse

You can install an Android app to a device using Eclipse or adb (Gradle does this for

the user for free but this is not the case in Eclipse or with other platforms). After

completing install using whatever method, your are done with this Appendix, and you

should resume the main tutorial beginning with the section, Inspecting the Mobile

App in TouchTest® (Native or Hybrid.

1. Connect the Android Device to the desktop client running Eclipse via USB. You
can also use a simulator. A physical device must have the following set:

o The stock browser on the device should support launch of native apps

o The Developer Options, USB Debugging box should be enabled

o The Security, Unknown sources box should be enabled

2. Click the Run Droidfish button on the toolbar to build the project and push it to the
Android Device.

 If the Android device is connected, and no Android Virtual Device (AVD) is running,
the app is installed to the device.

 If more than one device or emulator combination is available, then a selection box
appears for you to choose

 If no device is connected, the Android Virtual Device (AVD) will run and the
Droidfish app will be installed to it instead. The AVD must be using SDK 2.3.3 or
later.

When all of the conditions and steps above are completed, the app is pushed onto the
Android Device. The Eclipse Console will indicate success and the app will launch on the
device.

[2012-09-19 20:05:21 - DroidFish] ------------------------------
[2012-09-19 20:05:21 - DroidFish] Android Launch!
[2012-09-19 20:05:21 - DroidFish] adb is running normally.
[2012-09-19 20:05:21 - DroidFish] Performing org.petero.droidfish.DroidFish activity
launch

[2012-09-19 20:05:21 - DroidFish] Automatic Target Mode: using device '015d15b4da23f411'
[2012-09-19 20:05:21 - DroidFish] Uploading DroidFish.apk onto device '015d15b4da23f411'
[2012-09-19 20:05:23 - DroidFish] Installing DroidFish.apk...
[2012-09-19 20:05:26 - DroidFish] Success!
[2012-09-19 20:05:26 - DroidFish] Starting activity org.petero.droidfish.DroidFish on
device 015d15b4da23f411
[2012-09-19 20:05:26 - DroidFish] ActivityManager: Starting: Intent {
act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER]
cmp=org.petero.droidfish/.DroidFish }

Install from the Command Line using adb

1. Connect the Android Device to the desktop client or start the Simulator(s) before
using adb. A physical device must have the following set:

o The Developer Options, USB Debugging box should be enabled

o The Security, Unknown sources box should be enabled

2. From the command line, execute the adb command using your own paths:

~/android-sdks/platform-tools/adb install -r
~/Shared/Jenkins/Home/jobs/DroidfishFunctionalTests/bin/DroidFish-
debug_TouchTest.apk

When all of the conditions and steps above are completed, the app is pushed onto the
Android Device. The command line will indicate success and the app will launch on the
device:

873 KB/s (2083295 bytes in 2.330s)

 pkg: /data/local/tmp/DroidFish-debug_TouchTest.apk

Success

SOASTA, Inc.

444 Castro St.

Mountain View, CA 94041

866.344.8766

 http://www.soasta.com

http://www.soasta.com/

