
TouchTestTM Appcelerator Jenkins CI Tutorial

 	
	

TouchTestTM Appcelerator Jenkins CI Tutorial
©2015, SOASTA, Inc. All rights reserved.
The names of actual companies and products mentioned herein may be the
trademarks of their respective companies. This document is for informational purposes
only. SOASTA makes no warranties, express or implied, as to the information contained
within this document.

 	
	

Table of Contents
...Prerequisites
 1

...Third Party Prerequisites
 1
...iOS-Only Prerequisites
 1

..About	
 Shell	
 Steps	
 and	
 the	
 iOS	
 Signing/Provisioning	
 Prerequisite	
 2

..Android-Only Prerequisites
 3
...CloudTest Utilities and Plugins
 3

...Test Composition Prerequisites
 4

..CloudTest Continuous Integration Support
 5
...Installing the SOASTA CloudTest Jenkins/Hudson Plugin
 5

...Installing the GitHub Plugin
 7

..Static vs. Dynamic Instrumentation
 9
...Jenkins Workflows for TouchTest
 9

..Dynamic	
 Instrumentation	
 of	
 an	
 APP	
 @ile	
 10

..Dynamic	
 Instrumentation	
 of	
 an	
 IPA	
 @ile	
 10

...Static	
 Instrumentation	
 of	
 an	
 Xcode	
 Project	
 10

..Dynamic	
 Instrumentation	
 of	
 an	
 APK	
 @ile	
 10

...Static	
 Instrumentation	
 of	
 an	
 Android	
 Project	
 11

...Creating a Jenkins Job
 12
..Using the CloudTest Jenkins Plugin, MakeAppTouchTestable
 15

..About the Titanium SDK Path
 15
..Using MATT on an iOS APP Bundle (Dynamic Instrumentation)
 16

...Using MATT on an IPA (Dynamic Instrumentation for Device)
 16
............................Using MATT on a Project (Static Instrumentation for Simulators/Devices)
 18

...Using MATT on an APK (Dynamic)
 19
...Using MATT on a Project (Static)
 22

...Build the Titanium Project
 24

...Preparing the App for Simulators and Devices
 26
..Build the APP for a Simulator
 26

...Deploying the APP File on a Simulator
 27
...Installing the IPA Archive on iPhones and iPads
 28

...Using SCommand to Play One or More Compositions
 29

 i
	

..Adding the Publish Junit Test Result Reports Step
 31
..Building the Project
 31

..Inspecting Test Results in Jenkins
 33
..Appendix: Inspecting the Mobile App in CloudTest®
 1

..Appendix: Completed Execute Shell Script
 1

 ii
	

1

Prerequisites
This tutorial guides the user through the process of using the Jenkins continuous
integration tool combined with the CloudTest Jenkins/Hudson Plugin in tandem with an
example Titanium project and preconfigured CloudTest test compositions.
This tutorial provides guidance for two audiences:

• Users who would like to add Titanium iOS or Android Testing to a pre-existing
Jenkins setup

• Users who are either Titanium iOS Developers or Android Developers starting out
with TouchTest who would also like to add TouchTest to a continuous integration
setup
TIP:
 If your organization is not already using Jenkins—refer to the

documentation on the Use Jenkins page to get started. Additional
Jenkins installation references are included at the end of this guide.

A Jenkins job will be defined that uses git to retrieve the sample project, makes that
project touchtestable using the MakeAppTouchTestable utility, and which then deploys
the compiled app to multiple devices using a deployment script; after which several pre-
existing test compositions are called to run silently in CloudTest and on the specified
devices. Finally, CloudTest results are inspected inline in Jenkins, also via the CloudTest
Jenkins/Hudson Plugin.

Note:	 The Appcelerator sample mobile app, KitchenSink, which is available
from GitHub, is used as the example project in this guide.

Third Party Prerequisites
To get started, you'll need:

• For iOS, a Macintosh computer with sufficient USB ports to run the desired
number of devices, possibly using a USB hub

• For Android, a computer with sufficient USB ports to run the desired number of
devices, possibly using a USB hub

• Jenkins continuous integration software (this can be on the same Mac that is
running Titanium or on a different Mac node)

This tutorial assumes a minimal familiarity with Appcelerator Titanium Studio and the
following prerequisites:

• Titanium Studio is installed with Titanium SDK version 2.1.3 or above.

iOS-Only Prerequisites
The remaining iOS prerequisites are common to any Appcelerator project that utilizes the
iOS Developer Program to install an iOS app on a device:

• The developer is enrolled in the iOS Developer Program (so that the Appcelerator
app can be pushed to the iOS Device via iTunes).

	

https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins

2

• The Unique Device Identifier (UDID) of the iOS Device that will be used to test
must be registered at the Apple Provisioning Portal.

• iTunes 10.x or greater must be installed on the desktop client that is running
Titanium Studio.

One of the key steps during an iOS automated build is deploying the app to your test
device, without requiring any human interaction. Typical solutions (e.g. over-the-air
distribution) require that the user accept a prompt. SOASTA TouchTest includes a tool
(built using AppleScript) that silently deploys an app. It does this by automating the
process of opening the project in Titanium and running it, which causes Xcode to deploy.
To use the deploy script, you will need the following:

1. A dedicated machine running Mac OS X, with Xcode. If you are using Jenkins or
Hudson, this can be either the master node or a slave.

2. One or more tethered devices. If you have more devices than USB inputs, you
can use a USB hub. Note also that sufficient power to prevent the device from
running down unexpectedly should be available via that USB input.
A note on tethering: SOASTA TouchTest™ does not require tethering for
recording or playback. However, you do need to tether the device for silent
deployment of your app.

3. The device(s) should have the iOS “Auto-Lock” setting set to “Never”.
About Shell Steps and the iOS Signing/Provisioning Prerequisite
In general, the best practice for all shell steps presented in this tutorial is to first execute
all of them from the command line.
With respect to iOS signing and provisioning, you must perform the following one-time
procedure from Terminal to sign each profile/application combination that is in its first
use. Provisioning will not be silent until this is done.

TIP:

 If signing is not done, then a "User interaction not allowed"
error will occur in the build. This is because the Operating System
requires a user to sign an application using a specific Provisioning
profile for the first time. In that case, the Operating System needs
a user to authorize the signing process.

Use the following steps:
1. In Terminal, run the xcrun command from your Jenkins job manually.

Note:	 	 If you are using the Jenkins $WORKSPACE variable, you'll
need to change it to a Mac OS X path to work here.

When you do that, OS will popup a dialog box asking permission for the signing
process.

2. Choose "Always allow" and this error will not show up again.

	

3

Android-Only Prerequisites
• This tutorial uses Apache Ant with Android SDK. Learn more about the Android

SDK here, and Apache Ant here.
o The Minimum Android Version supported for use with TouchTest™ is 2.3.3

(Gingerbread).
o The Minimum Apache Ant version required for using the SOASTA CloudTest

Jenkins Plugin is 1.8.0 or later.
• The Jenkins GitHub Plugin is used to retrieve the project used in this tutorial

(instructions for installing it are presented below). Refer to the git site here.
• Each Android device must have the TouchTest Agent app installed and Connected

at runtime (if mobile web testing will occur then the TouchTest Web app is also
required).

Each Android device should have the following Settings:
• In the device settings, tap Developer Options and check the USB Debugging box.
• In the device settings, tap "Security" and then tap to check the Unknown sources

box.

CloudTest Utilities and Plugins
Before proceeding, download the following CloudTest plugin and utility software from the
CloudTest Welcome page, Downloads section.

• CloudTest Jenkins/Hudson Plugin (this Jenkins/Hudson plugin will be installed
using the Jenkins plugin interface). Jenkins CloudTest Plugin version 2.9 or later
and TouchTest 51.07 or later are required for dynamic instrumentation.

• CloudTest MakeAppTouchTestable Utility (this utility will be called at the
appropriate time via a Jenkins job using an Execute Shell build step)

	

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://ant.apache.org/
http://ant.apache.org/
http://git-scm.com/downloads
http://git-scm.com/downloads

4

Note: 	 	 The CloudTest user specified to run the
MakeAppTouchTestable utility must be a user with Mobile Device
Administrator rights.

• CloudTest Command Line Client (also known as sCommand, this command
line interface utility will be called at the appropriate time via a Jenkins job using
the CloudTest Jenkins Plugin's MakeAppTouchTestable, Play Composition(s) build
step). It is not necessary to download the command-line utility since the Plugin
also handles this task.

• For iOS only, the CloudTest iOS App Installer Utility is required (this utility
contains two executables; the ios_app_installer, which is used to install IPA files
to iOS physical devices; and the ios_sim_launcher, which is used to install
compiled APP bundle files). This archive contains two executables:

o For deployment to Simulators, use the ios_sim_launcher executable found
in the iOS App Installer Utility at the appropriate time(s) via a Jenkins job
using an Execute Shell build step.

o For deployment to iPhone and iPad devices, use the iOS App Installer
Utility to deploy .ipa archives to the physical device(s). This executable can
be called at the appropriate time(s) via a Jenkins job using an Execute Shell
build step.

The appropriate executable will be called at the appropriate time(s) via a Jenkins
job using an Execute Shell build step.

Test Composition Prerequisites
The test compositions you will use must already exist on the CloudTest instance that you
specify and you must use the correct SOASTA Repository path to invoke them. The test
composition specifies the device(s) that it will run on.
If you’re a new TouchTest user, refer to the following documentation before proceeding
with this tutorial.

	

5

CloudTest Continuous Integration Support
SOASTA CloudTest includes first-class support for including test output in build reports
for Jenkins and Hudson via the SCommand utility. Additionally, the Jenkins/Hudson
Plugin provides visual integration with CloudTest dashboards within Jenkins itself.
When you run test compositions via SCommand, CloudTest automatically outputs
JUnitXML-compatible test output. Since Jenkins provides out-of-the-box JUnit support
these result details from a given test composition run in Jenkins using SCommand will
appear on the corresponding Test Results page in Jenkins.
By placing all its XML into a directory that we also provide to Jenkins as a part of
defining a given job, we can easily display these JUnit-friendly test results inside Jenkins.
Using this configuration, a Jenkins Test Result detail page will display details from
CloudTest.
While it is not necessary to install the CloudTest Jenkins/Hudson Plugin to utilize
CloudTest’s JUnitXML-formatted output in Jenkins in this manner, plugin installation
adds the capability to also jump to specific test composition errors in the CloudTest
Result Details dashboard from within Jenkins.

In the screenshot above, the error heading and detail text are an output of SCommand
for the test shown.
Clicking the link, and providing CloudTest credentials, will then display the precise failure
inline in Jenkins for the given CloudTest result.

Installing the SOASTA CloudTest Jenkins/Hudson Plugin
Use the following steps to install the CloudTest Jenkins Plugin (version 2.9 or later are
required for dynamic instrumentation as well as to automatically update the CloudTest
Jenkins Plugin's MakeAppTouchTestable) from within your Jenkins instance. The MATT
module is auto-updated, so once it's installed the most current version is assured.

1. In Jenkins, click Manage Jenkins, and then click Manage Plugins.

	

6

2. Click the Plugin Manager, Advanced tab.
3. Locate the SOASTA CloudTest Plugin in the list (using Cmd+F and "Soasta" is a

quick way to locate it).

4. Click the Install without Restart button at the bottom of the page.
The Installing Plugins/Upgrades page appears and indicates success once the install
completes.

	

7

Before using the CloudTest Jenkins Plugin, you will need to provide the CloudTest server
URL and user credentials via the Manage Jenkins > Configure System page, CloudTest
section. We recommend creating a dedicated CloudTest account for Jenkins to use.

Installing the GitHub Plugin
Use the following steps to install the GitHub Plugin from within your Jenkins instance.
This will allow us to use GitHub as a Source Code Repository to retrieve the example
project, KitchenSink.

TIP: 	 Git is a distributed version control system used for software
development. It is not necessary to signup or login to GitHub in order
to checkout the code using the following command. In the Source
Code Management section, click Git.

	 If you are using your own app, you can skip this requirement and then
substitute the SCM tool and repository to use in the place of Git.

1. In Jenkins, click Manage Jenkins, and then click Manage Plugins.

2. Click the Plugin Manager, Advanced tab
3. Locate the GitHub Plugin and check it as well. Installing the GitHub Plugin will

also install the GitHub Plugin.

	

8

You can verify plugin installation on the Manage Plugins, Installed tab:

Note:	 We will specify a Git repository to clone in a later step in the Jenkins
job.

	

9

Static vs. Dynamic Instrumentation
The CloudTest Jenkins Plugin's MATT module supports two instrumentation methods:
static and dynamic. The MATT module plays a role in making either the iOS or Android
project or its compiled APP bundle, IPA, or APK TouchTestable.

• Dynamic instrumentation occurs when MATT instruments a compiled file (i.e.
an APP bundle folder, an IPA file, or APK file).

This method requires that you compile your project first to create an APP, IPA,
or APK, after which it can be instrumented using SOASTA 51.07 or later
(TouchTest 7040.58). Dynamic instrumentation is available for all supported
Android versions, while for iOS version 6 or later is required.

• Static instrumentation occurs when MATT instruments an iOS Android project.
This method requires that you apply MATT to the project prior to building the
APK. Static instrumentation is available in all TouchTest releases and for all
supported Android versions.

1. Determine whether to instrument the mobile app using the MATT input type
project or to instrument it using the APP, IPA, or APK options. The subsequent
steps will differ since MATT is applied at a different time in the workflow.

Jenkins Workflows for TouchTest
The CloudTest Jenkins Plugin is used to make the mobile app TouchTestable—either by
applying it to the project or to the APP bundle, IPA, or APK file itself (as discussed
below). OS-specific tools are used where applicable.

• In Android, Ant is used to build the APK and the command used depends whether
MATT has already been applied. After which, adb is used in an Execute Shell step,
followed by a final pre-build step that uses the CloudTest Jenkins Plugin, Play
Composition(s) command.

• In iOS, xcodebuild and xcrun are used, and the iOSAppInstaller utility command-
line commands are used to build and deploy.

Because there are different possible Jenkins job workflows, the possible steps are
presented a la carte. For each Jenkins job there will be (minimally):

o A First step; used to retrieve the source project (all workflows)
o In between the first and last steps, each Jenkins job will have:

! A CloudTest Plugin, MakeAppTouchTestable step;
! with one (or more) Build step using Ant (in Execute Shell)
! and one (or more) Install steps using adb (in Execute Shell)

o A Last step; to Play the Composition

	

10

Note: 	 Signing the app is done using the CloudTest Jenkins Plugin, MATT,
Advanced Options to enter the optional MATT parameters (refer to the
relevant sections). Signing can also be done from the command line
using an Execute Shell step and the tool of your choice.

Note the following terminology:
• Static instrumentation applies MATT to the iOS project file or to te Android project

folder
• Dynamic instrumentation applies MATT to the iOS APP bundle file, IPA file, or to

the Android APK file
Dynamic Instrumentation of an APP file

In this workflow, you'll apply MATT to the compiled APP file using the appbundle
parameter. If you're also deploying to physical devices, you'll need to mix and match
steps to do both, keeping in mind to build the APP first.

o Build the APP with an Execute Shell step using xcodebuild
o Apply MATT to that compiled APP using iOS APP Bundle
o Run App on iOS Simulator command

Dynamic Instrumentation of an IPA file

In this workflow, you'll delay applying MATT until the IPA is created
o Build the APP with an Execute Shell step using xcodebuild
o Build the IPA file with an Execute Shell step using xcrun,
o Apply MATT to that compiled IPA using ipa
o Install App on iOS Device command.

In the remainder of the Job Creation steps, mix and match the tasks that you need to
build your Jenkins job.

Static Instrumentation of an Xcode Project

In this workflow, you'll apply MATT to the Xcode project itself, using the project
parameter. After which, you'll add the steps necessary to build and install to your
simulators and devices.

o Apply MATT using the project parameter (static only)
o Build the APP with an Execute Shell step using xcodebuild
o (optional) Build the IPA with an Execute Shell step using xcrun
o Either Run App in iOS Simulator or Install iOS App on Device (using IPA)

Dynamic Instrumentation of an APK file

In this workflow, you'll apply MATT to the compiled APK file using the appbundle
parameter. If you're also deploying to physical devices, you'll need to mix and match
steps to do both, keeping in mind to build the APK first.

	

11

o Get the source code (in this scenario, using git)
o Build the APK with an Execute Shell step using Ant
o Apply MATT to that compiled APK using MATT's APK input type
o Install the APK
o Run the composition(s)
o Post results (optional)

In the following sections, choose only those steps that match your workflow.
Static Instrumentation of an Android Project
In this workflow, you'll apply MATT to the Android project itself, using the project input
type. This is done before the APK build step. After which, add the step(s) necessary to
build and install to your simulators and devices.

o Get the source code (in this scenario, using git)
o Apply MATT using the project input type (static only)
o Build the APK with an Execute Shell step using Ant
o Install the APK
o Run the composition(s)
o Post results (optional)

	

12

Creating a Jenkins Job
The Jenkins job created below will run on the desktop machine with Titanium and one or
more properly provisioned USB-attached devices. The job will have build steps using
Execute Shell that will utilize git to download a project from source, run the Make
AppTouchTestable utility on that project, build and deploy using the deploy script, and
use the Plugin's Play Composition(s) command to silently play a list of compositions.
Additionally, a Post-build action is used to publish the JUnit test result report.

1. In top-level Jenkins dashboard, click New Job.

The Job name page appears.

1. Enter a job name without spaces and select the first option, "Build a free-style
software project".

	

13

The Job Details page appears.

2. Enter the following configuration details for this job:
• A description. For example, “For example, "Checks out the KitchenSink source

code, makes the project or compiled file TouchTestable, deploys the app, and
runs a suite of CloudTest compositions."

• Click the Add build step drop-down and select Execute shell.

	

14

Get KitchenSink using the GitHub Plugin (All Workflows)
Next, we will add a step that will get the KitchenSink project that will be used in the
remainder of this tutorial. The following instructions use the Jenkins Git Plugin (installed
above). If you are using your own Source Code Management system simply select its
type and enter its repository URL, as you would normally do.
With the Git Plugin installed in our Jenkins instance, we will add the Source Code
Management step as we would with any SCM tool.

1. In the Source Code Management section, check the Git radio button.

Note: 	 You can specify your own SCM tool and Repository URL here.
2. Enter the GitHub Repository URL in the entry field:

https://github.com/appcelerator/KitchenSink

3. Save the Jenkins job and proceed with the OS-specific instructions below.

	

15

 Using the CloudTest Jenkins Plugin, MakeAppTouchTestable
As noted in the prerequisites above, the CloudTest Jenkins Plugin's
MakeAppTouchTestable module is used to automate portions of the Jenkins job.

Note: 	 The CloudTest user specified to run the CloudTest Jenkins Plugin,
MakeAppTouchTestable module must be a user with Mobile Device
Administrator rights. CloudTest Lite users have admin rights for the
given device on their own instance.

In the following sections, select only those steps necessary to complete your Jenkins
job. The workflows are organized first by mobile OS (iOS or Android) and then by the
instrumentation type.

About the Titanium SDK Path
In some cases where the Titanium SDK path is not automatically detected, you will need
to add your Titanium SDK path to the examples included below. In such cases, use the
-titaniumsdk parameter.
The Titanium SDK argument can be appended to the CloudTest Jenkins Plugin's MATT
step using the following syntax:
-titaniumsdk <Path of the Titanium SDK to use>

where the value of the Titanium SDK is either /Library/Application Support/ Titanium/
mobilesdk/osx/ or ~/Library/Application Support/Titanium/mobilesdk/osx/ with the flavor
or SDK appended at the end of the path.
For example,
“/Library/Application Support/Titanium/mobilesdk/osx/2.0.1.GA2”.

	

16

Using MATT on an iOS APP Bundle (Dynamic Instrumentation)
Use the following steps to dynamically instrument an APP bundle. This is typically done
before the APP is run on a simulator but after the project APP is built. For example, you
can use this step after an Execute Shell step using xcodebuild.
1. Add a MakeAppTouchTestable step to the job.

2. Apply MATT to the compiled APP by selecting the Input Type, iOS App Bundle (the
MATT command-line equivalent is the appbundle parameter).

1. Enter the APP name as the Input File (from the workspace root).

2. Optionally, click Advanced to display additional MATT configuration fields.
3. Save the Jenkins job.

Using MATT on an IPA (Dynamic Instrumentation for Device)
Use the following steps to dynamically instrument an IPA file. This is typically done as the
last step before it is installed on a device. For example, you can use this step after an
Execute Shell step using xcrun.
3. Add a MakeAppTouchTestable step to the job.

	

17

4. Apply MATT to the compiled IPA by selecting the Input Type, IPA (e.g. the MATT
equivalent is the ipa parameter).

4. Enter the IPA name as the Input File (from the workspace root).

5. Optionally, click Advanced to display additional MATT configuration fields.

• Launch URL – Same as MATT launchurl. For example: my-app://launch
• Back up modified files – Check this to keep backups in the project).
• Additional options - Enter any additional MATT command line parameters.

Most notably, you can use MATT to provision and code sign the dynamically
instrumented IPA file (code signing and provisioning can, of course, be done using
xcrun, which is discussed in the Execute Shell step, Building the IPA for a Device).
Use the following MATT optional IPA parameters

o -provisioningprofile <profilepath> - Path of the Provisioning profile
to be used for building IPA file. The provisioning profile you input
MUST to be a Distribution profile.

o -signingidentity <signingidentityname> - Name of the signing
identity to be used for codesigning the application. (e.g. "iOS Distribution:
Developer Name")

o -entitlementsfile <entitlementsfilepath> - path of the entitlements
file to be used for codesigning the application

For more about using additional MATT parameters, use:

	

18

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -help 0

6. Save the Jenkins job.

Using MATT on a Project (Static Instrumentation for Simulators/
Devices)
This utility is automatically downloaded by the SOASTA CloudTest Jenkins Plugin and
can be easily specified in your Jenkins job using the following steps.

7. Click Add a Build Step, and select MakeAppTouchTestable from the drop-down
list. This MakeAppTouchTestable step will always be the first step in a Static
Instrumentation workflow, but will come after the APP or IPA is built where those
files are in use on a simulator(s) or device(s).

The Make App TouchTestable form appears.

8. Enter the Xcode project name as the Input File.

	

19

9. Optionally, click Advanced to display additional MATT configuration fields.

• Launch URL – Same as MATT launchurl. For example: my-app://launch
• Target – Same as MATT target. For example: Stockfish copy

• Back up modified files – Check this to keep backups in the project folder
(where .xcodeproj resides).

• Additional options - Enter any additional MATT command line parameters. For
more about using additional MATT parameters, use:
sh MakeAppTouchTestable/bin/MakeAppTouchTestable -help 0

10.Save the Jenkins job.

Using MATT on an APK (Dynamic)
Use the following steps to dynamically instrument an APK file at the proper point in your
workflow.

• If you are using dynamic instrumentation, you must first do the APK step prior to
this step. But, if you'd rather follow along sequentially, you can add the MATT
step now so long as you place an APK build step prior to it before building the
Jenkins job.

• If you are using static instrumentation, you must apply MATT to the project prior to
this step.

1. Add a MakeAppTouchTestable step to the job.

	

20

2. Select the Input Type, APK (e.g. the MATT equivalent is the APK parameter).

3. Enter the APK name as the Input File (from the workspace root).

	

21

4. Optionally, click Advanced to display additional MATT configuration fields.

5. Specify MATT flags as required. For example, androidsdk when installing a debug
APK to a physical device and either overwriteapp or donotcreateapp to prevent
Jenkins from marking the MATT step as FAILURE (even though the TouchTestable app
is created as expected).

• Launch URL – Same as MATT launchurl. For example: my-app://launch
• Backup modified files – Check this to keep backups in the project.
• Additional options - Enter any additional MATT command line parameters.

Most notably, you can use MATT to add keystore, keypass, and storepass
arguments to sign the dynamically instrumented APK file.
Use the following MATT optional APK parameters

• -keystore <keystorepath> - Path of the keystore to be used to sign the APK file..
• -storepass <keystorepassword> - Password of the keystore to be used to sign

the APK file.
• -keypass <privatekeypassword> - Password of the private key (if different

than the keystore password) to be used to sign the APK file.
For more about using additional MATT parameters, use:
sh MakeAppTouchTestable/bin/MakeAppTouchTestable - help 0

	

22

6. Save the Jenkins job.

Using MATT on a Project (Static)
Use the following steps if you'll be instrumenting the project using the static method via
the Input Type, project. This step will always proceed the build APK step while using
static instrumentation.

1. Click Add a Build Step, and select Make App TouchTestable from the drop-down
list.

The Make App TouchTestable form appears.
TIP: 	 Click the Help icons for any row to get tip text.

2. Select the CloudTest Server from among those configured.
Note:	 Indicating the CloudTest server was done as part of the CloudTest

Jenkins Plugin, Configure System step. If not entries appear here
return to Manage Jenkins > Configure System, and fill in the
information in the CloudTest Servers section. Be sure to save these
changes.

3. Specify the current project folder to use. "droidfishchess_android" to indicate the
project folder in the Jenkins workspace.

	

23

4. Optionally, specify additional parameters by first clicking the Advanced button
(page right).

5. Select the CloudTest Server from among those configured.
TIP:	 Indicating the CloudTest server was done as part of the CloudTest

Jenkins Plugin, Configure System step. If not entries appear here
return to Manage Jenkins > Configure System, and fill in the
information in the CloudTest Servers section. Be sure to save these
changes.

6. Optionally, click Advanced to display additional MATT configuration fields.

• Launch URL – Same as MATT launchurl. For example: my-app://launch
• Back up modified files – Check this to keep backups in the project folder (where

build.xml resides).
• Additional options - Enter any additional MATT command line parameters.

Most notably, you can use MATT to add keystore, keypass, and storepass
arguments to sign the dynamically instrumented APK file.
Use the following MATT optional APK parameters

• -keystore <keystorepath> - Path of the keystore to be used to sign the APK file..
• -storepass <keystorepassword> - Password of the keystore to be used to sign

the APK file.
• -keypass <privatekeypassword> - Password of the private key (if different

than the keystore password) to be used to sign the APK file.
For more about using additional MATT parameters, use:

	

24

sh MakeAppTouchTestable/bin/MakeAppTouchTestable - help 0

7. Click Apply and then Save.

Build the Titanium Project
Now that we’ve revised our script to make the directory, clone the KitchenSink app
source, and to make the app source touchtestable, the next section will be used to build
the Titanium project using the Python builder.py script that comes with the Titanium SDK
in use.

Note:
 The builder.py file is available as part of all Titanium SDKs. However,
you must use the one that corresponds to the Titanium SDK your
project uses. As noted in Prerequisites, TouchTest supports only
Titanium SDK 2.1.3 and later.

This section of our Execute Shell script will generate both an Xcode project and store it
in the "build/iphone" sub-directory of your Titanium project (e.g. "~/dev/Jenkins/
workspace/JenkinsFucntionalTests/KitchenSink/build/iphone/KitchenSink.xcodeproj").
Below is a sample section that uses all the parameters above (as commented fields)
followed by the command itself.
Build the Titanium project.

#

Parameters:

mode

Minimum iOS version ("5.1" in this example)

Path to the Titanium project directory

Titanium app ID

Titanium app name

iOS provisioning profile identifier (see comments below)

iOS provisioning profile owner (see comments below)

$ "/Library/Application Support/Titanium/mobilesdk/osx/2.1.3.GA/iphone/
builder.py" install 5.1 "~/dev/jenkins/workspace/JenkinsFucntionalTests/
KitchenSink" com.appcelerator.kitchensink KitchenSink b92b4cc0-fc88-11e1-
a21f-0800200c9a66 "John Doe" universal

1. Determine all of the following values and then paste the revised command into the
Execute Shell script using the sample at the end of this section.
You will need the following information to proceed:

• Mode – Users have 3 options as a mode. Choose the mode based on your Apple
Profile (use Xcode's Organizer to review your profile options).

• install (requires Apple Developer Profile)
• adhoc (requires Apple Distribution Profile)

	

25

• distribute (requires Apple Distribution Profile).
• Minimum iOS version – For example, 5.1.
• Path to the Titanium project directory on the Jenkins node (will be the same as the

one used for MakeAppTouchTestable above).
• Titanium app ID - the app ID can be found in tiapp.xml (in the <id/> element). For

this example, the ID com.appcelerator.titanium
• Titanium app Name – the app Name can be found in tiapp.xml (in the name/>

element. For this example, KitchenSink
• iOS provisioning profile identifier - The provisioning profile identifier is typically

located in the "~/Library/MobileDevice/Provisioning Profiles" directory. You'll find
one or more files with the extension ".mobileprovision". The profile ID is the name
of the file, minus the extension.

• iOS provisioning profile owner Team Name- the profile "owner" is the name of the
iOS development team to which the profile is registered.

	

26

Preparing the App for Simulators and Devices
The iOS App Installer Utility contains two executable files—ios_sim_launcher and
ios_app_installer. Deployment is achieved for both Simulators and iPad/IPhone
devices using these executables and the steps described below. Unzip the utility at this
time if you have yet to do so and note the contents of the resulting iOSAppInstaller
folder.

• For a Simulator, the ./bin/ios_sim_launcher -app command is used
In order to deploy to a simulator, we must first build an APP file and then use that
APP file with the ios_sim_launcher

• For an iPhone or iPad, the ./bin/ios_app_installer -ipa
In order to deploy to a physical device, we must first build an APP file, followed by
building an IPA file, after which we can use the ios_app_installer.

Build the APP for a Simulator
The app file is a requirement for deployment to all iOS simulators and devices.
In order to build the app, the command line xcodebuild command is used.

1. Enter the following lines in the end of the Execute Shell field (revise the paths to
match that of your own environment):
#Build the KitchenSink app for Simulator

/usr/bin/xcodebuild -sdk iphonesimulator -target "KitchenSink-universal"
-project ~/dev/jenkins/workspace/JenkinsFunctionalTests/KitchenSink/
build/iphone/KitchenSink.xcodeproj -configuration Release clean build

where (as in the MakeAppTouchTestable command above):
• <sdk> in this case is iphonesimulator
• <target> is the name of the target in the ".xcodeproj" file representing your

project. Note that you need to either specify the sdk as an argument
(recommended) or create a Target specifically for Simulators

• <project> is the path of the ".xcodeproj" file to build
• <configuration> is the type of build. Refer to /usr/bin/xcodebuild –help

for more information.

	

27

After the APP has been successfully created, it can be deployed to a simulator using the
steps in the next section. If you are deploying to an iPhone or iPad, you must first create
an IPA archive before deployment.

Deploying the APP File on a Simulator
Once the APP file has been created, use the following step to run the ios_sim_launcher
to deploy the compiled APP file.
Before starting, note the path to the unarchived iOS App Installer Utility folder where
ios_sim_launcher resides.

1. In the Execute Shell field, enter the following (be sure to use your own paths as
well as to specify the iOS SDK and family of the simulator to use):
#Deploy the APP to a simulator

cd ~/Documents/Demo/iOSAppInstaller/

./bin/ios_sim_launcher --app ~/dev/jenkins/workspace/
JenkinsFunctionalTests/KitchenSink/build/iphone/build/Release-
iphonesimulator/KitchenSink.app --sdk 5.1 --family ipad --agenturl
"http://<CloudTest URL>/concerto/touchtest"

The ios_sim_launcher requires the app path:
• --app <app path> - The path to the compiled APP.

Note:	 The highlighted CloudTest URL placeholder in the above shot, which
originates in the appendix script at the end of this tutorial, must be
replaced with your own CloudTest URL.

The ios_sim_launcher takes the following additional parameters. These are used in the
example above to specify the SDK and family:

• --sdk <version> - The iOS SDK version to use. For example, 5.1.
• --family <list> - The simulated device family, values are ‘iphone’ (default), ipad,

iphone_retina, and ipad_retina.
• --agenturl – The agenturl parameter specifies the TouchTest Agent URL to use to

launch the device agent, which is a requirement for continuous integration. The
value is the CloudTest URL with the /concerto/touchtest URL string appended.

	

28

Installing the IPA Archive on iPhones and iPads
In this section, we’ll run the ios_app_installer to deploy the IPA archive created in the
prior section. Before starting, note the path to the downloaded iOS App Installer Utility.
In the example below, the IPA archive is in the Jenkins workspace we already defined as
part of this Jenkins job.

1. In the Execute Shell field, enter the following (be sure to revise this example to use
your own paths):
#Deploy the IPA to all devices

cd ~/Documents/Demo/iOSAppInstaller/

./bin/ios_app_installer --ipa ~/dev/jenkins/workspace/
JenkinsFunctionalTests/KitchenSink/build/iphone/build/Debug-iphoneos/
KitchenSink.ipa

The script requires the following parameters:
• --ipa <ipapath> - The path to the IPA archive.
Note: 	 Your user-configurable IPA archive location will vary. In the above

example, the file is in the Jenkins workspace that we specified as ~/
dev/jenkins/workspace/JenkinsFunctionalTests/KitchenSink/build/
iphone/build/Debug-iphoneos/.

The iOS App Installer Utility will deploy to all the tethered provisioned devices by default.
If you’d like to limit the deployment to specific devices use the following optional
parameters:

• --udid <list> - One or more device UDID in a comma-separated list, if unspecified
it install on all the connected iOS devices

• --device <list> : device name list comma-separated, if unspecified it install on all
the connected iOS devices

	

29

Using SCommand to Play One or More Compositions
Next, we will add SCommand lines that will silently play the specified test compositions
on the specific CloudTest instance. Additionally, we will add arguments that will output
junitxml-compatible XML code that will appear in Jenkins for each test result.

1. In the Execute Shell field, enter the following (be sure to substitute the full path for
the composition you’d like to use):

Run the first composition.

The result will be stored in the "testresults/kitchensink1.xml" file.

Jenkins will use this file to render the test report.

~/Documents/Demo/scommand/bin/scommand \

 cmd=play \

 name="/SOASTATutorial/Titanium/Composition for KitchenSink1" \

 wait \

 format=junitxml \

 url=http://ctmobile.soasta.com/concerto \

 username=SOASTA_DOC

 password=secret >testresults/kitchensink1.xml

2. Enter any additional compositions for the job:
Run the second composition.

The result will be stored in the "testresults/kitchensink2.xml" file.

Jenkins will use this file to render the test report.

~/Documents/Demo/scommand/bin/scommand \

 cmd=play \

 name="/SOASTATutorial/Titanium/Composition for KitchenSink2" \

	

30

 wait \

 format=junitxml \

 url=http://ctmobile.soasta.com/concerto \

 username=SOASTA_DOC \

 password=secret >testresults/kitchensink2.xml

	 	 	 	 	 	

	

31

Adding the Publish Junit Test Result Reports Step
Next, we will add a Post-build action that will display SCommand output in Jenkins and
opt in to plugin display as well.

1. In the Post-build action section, check “Publish JUnit test result report.”

2. In the Test report XMLs field, enter a path where the JUnit XML will be created.
This should be in the Jenkins workspace. The folder need not exist prior to the
first build.
For example, the folder testresults/**/*.xml.
Note: 	 The error shown below will display the no match error until after the

first build.
3. Under the Additional test report features section, check the 'Include links

to SOASTA CloudTest dashboards' box.

4. Check the Include links to SOASTA CloudTest dashboards box to opt into the
plugin for this job.

5. Click Save to exit the job.

Building the Project
After you click the Save button, you will be taken to the project page for the job you just
created.

1. To build the project, click the "Build Now" link.

	

32

The build will start. After a short delay, you should see a progress bar appear on the left
side of the page. Click this progress bar to watch the build process "live" in the Console
view.
You should see the following happen:

a. Jenkins checks out the source code from Git, and runs the
MakeAppTouchTestable utility.

b. Jenkins runs the DeployProjectToDevice script. On the build node, you should
see Xcode immediately launch and deploy the KitchenSink app to the tethered
device. Do not interact with Xcode while this is happening. Once the app has
been deployed, Xcode will automatically exit.

c. On the tethered device, you should see the KitchenSink app briefly appear. It will
immediately switch over to the SOASTA TouchTest Agent web page (in Safari),
with the Status showing "Connected" <insert screen shot>.

d. Jenkins plays the CloudTest compositions using SCommand. On the tethered
device, you should see the KitchenSink app launch and run through the test
steps. When the test finishes, KitchenSink will exit, and the SOASTA TouchTest
Agent page will re-open.

	

33

Inspecting Test Results in Jenkins
On the build summary page, the Test Result link (added by the steps in the previous
section) appears.

1. Click Test Result.

For a successful test with no failures, the Test Result page merely lists the All Tests
section with the given package (i.e. in this case the package equates to a CloudTest
repository folder).

2. Click the Package link until you reach the composition folders. Each click opens
the subsequent CloudTest folder.

The composition was a success in this case.

	

34

3. Use the “Click here…” dashboard link to view CloudTest inline. Login using your
credentials if you get the Login page. After doing so, the dashboard for the given
composition is shown.

	

35

Things get more interesting when an error in the test occurs. The subsequent
SCommand output is displayed (in text) on the Jenkins Test Result page (as discussed
above).

In this case, the All Failed Tests section is added with the name of the test listed with a
link to more of the SCommand details. Clicking the link under the Test Name section
where the composition is named displays an Error detail page (for the given error).

In the error above a validation in the Composition for KitchenSink1 has failed.

4. To view this error in the CloudTest, Result Details dashboard, click the plugin link
provided (i.e. “Click here to see the SOASTA CloudTest dashboard for this test).”

	

36

After the plugin link is clicked, enter CloudTest credentials whenever required.

• After credentials are entered, the dashboard tab opens, displays the test result,
and jumps to the relevant error.

	

37

From here, the Result Details dashboard can be navigated as within any CloudTest
dashboard. Refer to Result Details Dashboard for a quick review of Result Details
features.

	

http://cloudlink.soasta.com/t5/Knowledge-Base/Result-Details-Dashboard/ba-p/710
http://cloudlink.soasta.com/t5/Knowledge-Base/Result-Details-Dashboard/ba-p/710

a

Appendix: Inspecting the Mobile App in CloudTest®
In the steps above at the end of each run of the MakeAppTouchTestable.jar we were
notified that the “Mobile App Object” had been created in the CloudTest® Repository.

TIP:	 This mobile app will appear in the Choose Device Agent and Mobile
App box whenever end-users start a mobile app recording. Selecting
which mobile app to launch on which test devices is a crucial end-
user step.

1. Optionally, verify that the Mobile App has been added by logging into CloudTest®
and looking for its entry in the Central > Mobile Apps list. For example, in the
screenshot below the KitchenSink copy app appears as expected.

2. Double-click the KitchenSink Mobile App to inspect its details.
The Mobile App detail form appears.
• All of the fields shown were populated from the Xcode project, with the

exception of Supported Device Type and Minimum OS Version.

	

b

• The default Supported Device Type is Universal (e.g. both iPhone and iPad).
Leave this as is, since we will be specifying multiple devices later.

The default Minimum OS Version supported in TouchTest™ beta is iOS 5.0

	

I

Appendix: Completed Execute Shell Script
The completed Execute Shell script described above is presented in its entirety below.
You can use this as a template to insert your own paths as well as your own CloudTest
URL wherever it is required.

#Continue playing subsequent compositions if a prior composition fails

set +e

#Create the test result reports folder if it doesn't already exist

mkdir -p testresults

#Remove the version we downloaded as part of last build (if any)

rm -rf "KitchenSink"

#Download KitchenSink from Github

/usr/local/git/bin/git clone https://github.com/appcelerator/KitchenSink

#Run MakeAppTouchTestable (be sure to enter your CloudTest URL here)

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -project $WORKSPACE/
KitchenSink -target "KitchenSink" -url http://<CloudTest URL>/concerto -
username SOASTA_DOC -password secret

Build the Titanium project.

#

Parameters:

mode (should be "adhoc" for CI)

Minimum iOS version ("5.1" in this example)

Path to the Titanium project directory

Titanium app ID

Titanium app name

iOS provisioning profile identifier

iOS provisioning profile team name

"/Library/Application Support/Titanium/mobilesdk/osx/2.1.3.GA/iphone/
builder.py" install 5.1 ~/dev/jenkins/workspace/JenkinsFunctionalTests/
KitchenSink com.appcelerator.kitchensink KitchenSink 20433FAB-7A9C-4996-BDD3-
E660DB279261 "James GARDNER" universal

	

II

#Build the KitchenSink app for Simulator

/usr/bin/xcodebuild -sdk iphonesimulator -target "KitchenSink-universal" -
project ~/dev/jenkins/workspace/JenkinsFunctionalTests/KitchenSink/build/
iphone/KitchenSink.xcodeproj -configuration Release clean build

#Deploy the APP to a simulator (be sure to enter your CloudTest URL here)

cd ~/Documents/Demo/iOSAppInstaller/

./bin/ios_sim_launcher --app ~/dev/jenkins/workspace/JenkinsFunctionalTests/
KitchenSink/build/iphone/build/Release-iphonesimulator/KitchenSink.app --sdk
5.1 --family ipad --agenturl "http://<CloudTest URL>/concerto/touchtest"

#Deploy the IPA to all devices

cd ~/Documents/Demo/iOSAppInstaller/

./bin/ios_app_installer --ipa ~/dev/jenkins/workspace/JenkinsFunctionalTests/
KitchenSink/build/iphone/build/Debug-iphoneos/KitchenSink.ipa

Run the first composition.

The result will be stored in the "testresults/kitchensink1.xml" file.

Jenkins will use this file to render the test report.

~/Documents/Demo/scommand/bin/scommand \

 cmd=play \

 name="/SOASTATutorial/Titanium/Composition for KitchenSink1" \

 wait \

 format=junitxml \

 url=http://ctmobile.soasta.com/concerto \

 username=SOASTA_DOC \

 password=secret >testresults/kitchensink1.xml

Run the second composition.

The result will be stored in the "testresults/kitchensink2.xml" file.

Jenkins will use this file to render the test report.

~/Documents/Demo/scommand/bin/scommand \

 cmd=play \

 name="/SOASTATutorial/Titanium/Composition for KitchenSink2" \

 wait \

 format=junitxml \

 url=http://ctmobile.soasta.com/concerto \

	

III

 username=SOASTA_DOC \

 password=secret >testresults/kitchensink2.xml

	

SOASTA, Inc.
444 Castro St.

Mountain View, CA 94041
866.344.8766

http://www.soasta.com

	

http://www.soasta.com
http://www.soasta.com

