

SOASTA TouchTest™ Appcelerator iOS Tutorial
©2015, SOASTA, Inc. All rights reserved.
The names of actual companies and products mentioned herein may be the trademarks of
their respective companies.
This document is for informational purposes only. SOASTA makes no warranties, express or
implied, as to the information contained within this document.

	
 	
 TouchTestTM	
 Appcelerator	
 iOS	
 Tutorial	

 i

Table of Contents

Why Mobile App Testing? .. 1	

CloudTest® Basics .. 1	

What Does Touch Test Record? ... 2	

Adding TouchTest™ to an Appcelerator App .. 4	

Appcelerator and iOS Developer Prerequisites .. 4	

TouchTest Prerequisites ... 4	

Importing the Sample Project .. 6	

Using the MakeAppTouchTestable Utility ... 9	

Static vs. Dynamic Instrumentation ... 9	

Applying	
 MATT	
 to	
 an	
 IPA	
 or	
 APP	
 (Dynamic	
 Instrumentation)	
 ...	
 9	

Making	
 an	
 APP	
 file	
 TouchTestable	
 ...	
 10	

Making	
 an	
 IPA	
 file	
 TouchTestable	
 ..	
 13	

Making	
 a	
 Titanium	
 Project	
 (Static	
 Instrumentation)	
 ...	
 14	

Inspecting Changes to the Titanium Project (Static) ... 16	

Deploy the TouchTestable App .. 18	

Install from Titanium Studio (Static Instrumentation) ... 18	

Install from the Command Line (Dynamic Instrumentation) .. 20	

Registering Your Device to Use TouchTest™ .. 22	

Approving a Mobile Device (Administrator Only) .. 27	

Associating Mobile Apps with a Device .. 28	

 ii

Recording a TouchTest™ Scenario ... 30	

Create a Simple TouchTest™ Clip using KitchenSink ... 31	

Adding an Interval Delay between Each Action ... 35	

Create a Composition .. 37	

Playing a Composition .. 39	

Result Details ... 40	

Navigating Result Details .. 42	

Identifying and Analyzing Common Errors ... 44	

Network or Communication Errors .. 44	

App Action and Other Errors ... 45	

Advanced Clip Editing .. 46	

Planning a Complex Test in KitchenSink .. 46	

Increasing Test Clip Complexity .. 47	

Inspecting App Action Details ... 49	

App Action Elements and Properties ... 50	

Adding a Text Validation .. 52	

Adding an Output .. 53	

Adding a Label Validation .. 55	

Analyzing Results .. 57	

Adding TouchTest™ IDs to an iOS App in Titanium .. 60	

Supported	
 Titanium	
 Components	
 ...	
 61	

Identifying	
 the	
 Component	
 to	
 Modify	
 ...	
 62	

 iii

Re-Record the KitchenSink Clip with TouchTestIDs ... 63	

 1

Why Mobile App Testing?
CloudTest ’s new TouchTest™ technology delivers, for the first time, complete
functional test automation for continuous multi-touch, gesture-based mobile
applications. TouchTest™ technology delivers fast, precision functional testing while
increasing the stability of automated tests across releases.

CloudTest® controls mobile devices through a lightweight software agent, SOASTA
TouchTest Agent, and accesses them using their IP address. Devices can be
dedicated to testing in the lab, used as part of a short external test, or crowd-
sourced as part of a high volume, globally distributed test.

 There is no need to jailbreak the iOS device and the device can be untethered.

CloudTest® Basics
SOASTA provides fast, effective performance, load and functional testing of any
modern Web application, Web service, or mobile application in a lab, staging or
production environment using a unique multi-track user interface. The CloudTest®
platform can utilize both public and private cloud resources to assure any web or
mobile application won’t fail under peak user traffic.

The CloudTest® Central tab lists all primary features, organized by sections.
Central's first section—highlighted in light blue—contains the Welcome page, and
the primary test building tools.

The Composition is the test itself as presented in the Composition Editor, and
contains one or more Clips arranged on Tracks and governed by user-specified
sequence and tempo. The Composition Editor is a player, debugger, as well as the
dashboard where results are analyzed.

The Clip is the basic building block of a test as presented in the Clip Editor and has
a Target such as HTTP traffic for a site, or a browser UI (web site); or in the case of
TouchTest™, a mobile app. A clip can contain messages, actions, scripts, as well as
delays and checkpoints—all of which can be organized into containers (chains,
groups, pages, transactions, if-then-else, and switch)—and parameterized as
required.

2

TouchTest™ clips are recorded directly from the mobile app and added to the Clip
Editor (as described in this tutorial) as you perform them on the mobile device. A clip
can be thought of as a visual script that is composed of a series of timed or
sequenced events, which correspond to gestures performed on the mobile device. It
can contain messages, browser or app actions, and scripts, as well as delays and
checkpoints—all of which can be organized into containers (i.e. groups, chains,
transactions, etc.).

What Does Touch Test Record?

TouchTest™ records the details of actual gestures and events that iOS invokes on th
e app that is tested. These gestures and events are represented within the Clip
Editor as App Actions. Precision recording captures and plays back all continuous to
uch gestures including pan, pinch, zoom and scroll.

Each gesture you perform on a TouchTest‐enabled device is precisely, and automati
cally, added to the test clip as an App Action. Like any clip element within CloudTest
®, App Actions have inputs and outputs, as well as properties, waits, and validations
 that can be parameterized. Additionally, an App Action can be added to any contain
ers (e.g. transactions, groups, etc.).

TouchTest™ clips are recorded directly from the mobile app and added to the Clip
as you perform them on the mobile device. A clip can be thought of as a visual
script that is composed of a series of timed or sequenced events, which correspond
to gestures performed on the mobile device. Planning a TouchTest™

As a general guideline, your test should account for all the factors of the mobile
app(s) you want to test, and include one, or, as many viable test cases as it will take
to arrive at a good mobile app test case.

Once a test case is determined for a given mobile app it can be easily captured. The
test designer can move quickly from recording to defining validations and other test
details for those captured app actions. In the context of mobile testing, planning will
also take into account the following factors:

• The types of app actions to perform

The test designer will consider the types of app actions that make up a test case for
the given mobile app. These app actions should then be performed during recording.

3

• The timing of app actions

In addition to TouchTest’s built-in detection of the duration of gestures, CloudTest®
provides an additional set of Waits, which allow the tester to gain control of the pace
within a test.

• The validation of tests

Verifying the behavior of a mobile app is another important step in successful testing.
After each app action is recorded, the test designer can add as many validations as
needed by picking from among built-in Verify commands.

• The number of devices and their locations

Typically, a single test clip defines a single test case that can be run on multiple
tracks or devices. However, tests of great complexity can be quickly devised by
introducing multiple test cases, multiple devices, and multiple repeats—possibly in
tandem with geographic location. Complex mobile app tests can be easily built
utilizing one or all of these capabilities.

4

Adding TouchTest™ to an Appcelerator App
This section describes the steps necessary to make an existing Appcelerator project
TouchTestable. This tutorial uses the Appcelerator sample app, KitchenSink.
However, you can substitute any Appcelerator app and easily follow along.

Appcelerator and iOS Developer Prerequisites
The following steps assume a minimal familiarity with Appcelerator Titanium Studio
and the following prerequisites:

• Titanium Studio is installed with Titanium SDK version 2.1.3 or above.

The remaining prerequisites are common to any Appcelerator project that utilizes the
iOS Developer Program to install an iOS app on a device:

• The developer is enrolled in the iOS Developer Program (so that the
Appcelerator app can be pushed to the iOS Device via iTunes).

• The Unique Device Identifier (UDID) of the iOS Device that will be used to test
must be registered at the Apple Provisioning Portal.

• ITunes 10.x or greater must be installed on the desktop client that is running
Titanium Studio.

TouchTest Prerequisites
The following prerequisites are required to make an Android project
“TouchTestable”:

• Download the MakeAppTouchTestable utility from Resources > Downloads.

• Unarchive the ZIP file into your working directory. It is not necessary to open
any of the contents shown below.

5

This archive contains the following:

• MakeAppTouchTestable.jar utility is the script that will make the necessary
modifications to a project, APP bundle folder, or IPA, as well as to create a
mobile app object in your CloudTest® instance.

• The TouchTestDriver folder. The contents of this folder will be
automatically copied to your project.

• The titanium folder contains files expressly used by Titanium Studio.

• You will need a mobile app to follow the tutorial, such as the example
KitchenSink project.

Whichever project is used, note the project’s components prior to running the utility.
The unarchived KitchenSink project folders are shown below.

6

Importing the Sample Project
Use the following steps to import the sample KitchenSink app used in this tutorial
into Titanium Studio.

• Download the KitchenSink project archive into your working folder and unzip
it.

• This can be done using the GitHub for Mac app, or:

• By using the git command from the command line:

git clone https://github.com/appcelerator/KitchenSink

Note: The git command must be installed on the given node and in the path
to succeed. If git is not in your path, modify the command above
accordingly.

1. Once you have the project (or some other one) imported, launch Titanium
Studio and login.

2. Click File > Import. The Import box appears.

7

3. Select Titanium > Existing Mobile Project and click next.

4. Click "Next" to proceed to the Import Existing Mobile Project box.

5. Identify the folder to use as the Project directory.

8

6. Use the default project name or uncheck the Use imported project name to
assign it a new name.

The KitchenSink project is created and appears in the Project Explorer list in Titanium
Studio.

7. Exit Titanium Studio if it is running.

9

Using the MakeAppTouchTestable Utility
TouchTest™ includes the MakeAppTouchTestable (MATT) utility, which will
automatically add the necessary components to an existing Xcode project file, APP
bundle folder, or IPA and make it TouchTestable. The MATT utility will also create the
Mobile App entry in the CloudTest® repository.

Note: The CloudTest user specified to run the MakeAppTouchTestable
utility must be a user with Mobile Device Administrator rights or a
CloudTest Lite user.

Static vs. Dynamic Instrumentation

The MATT utility supports two instrumentation methods: static and dynamic.

• Dynamic instrumentation occurs when MATT instruments an existing IPA
or APP bundle folder.

This method requires SOASTA 51 (TouchTest 7040.11 or later) and can be
applied to iOS versions 6 and 7 only.

• Static instrumentation occurs when MATT instruments a project file (i.e. an
Xcode project or in this case to a Titanium project folder).

Static instrumentation is available in all TouchTest releases and for all
supported iOS versions.

Applying MATT to an IPA or APP (Dynamic Instrumentation)

Before you can use dynamic instrumentation, you must have either an APP or IPA file
with which to work. Obtain the required APP bundle folder or IPA file path prior to
attempting the following steps.

TIP: Refer to MakeAppTouchTestable help (via the Command line using: java
–jar MakeAppTouchTestable.jar -help) for more information.

MATT users can dynamically instrument a compiled iOS file by specifying one of the
two following flags:

• -ipa – The full path to the compiled IPA file

• -appbundle – The full path to the compiled APP file

10

TIP: Provide the additional MATT signing, provisioning, or entitlements file
parameters (listed below) whenever they are required by iOS. If you're
not the developer, discuss the optional parameters with your
developer.

Optional parameters for IPA/APP

The following optional parameters are also available for dynamic instrumentation of
IPA and APP files (in some cases their use may be necessary to succeed).

-signingidentity <signingidentityname> The name of the signing identity to be used
for codesigning the application (e.g. "iOS
Distribution: Developer Name").

IMPORTANT: 	
 MATT	
 can only sign your app with
a Distribution profile. This can be an Ad-
Hoc Distribution or an Enterprise
Distribution profile.

-provisioningprofile <profilepath>

Path of the Provisioning profile to be used
for building IPA file.

-entitlementsfile
<entitlementsfilepath>

Path of the entitlements file to be used
for codesigning the application. In the
vast majority of cases, the entitlements
file is not required.

Making an APP file TouchTestable

The dynamic instrumentation method for APP uses the MATT parameter -
appbundle.

1. To dynamically instrument an IPA using the MakeAppTouchTestable utility,
run:

java -jar MakeAppTouchTestable.jar -appbundle <compiled APP bundle
folder> -url <CloudTest URL> -username <CloudTest user name> -password
<CloudTest password>

where:

• <compiled APP bundle folder> is the full path to the compiled iOS APP
bundle file

Here is a complete example using -appbundle:

sh MakeAppTouchTestable MakeAppTouchTestable/bin/MakeAppTouchTestable
-appbundle ~/Documents/Demo/KitchenSink/build/iphone/build/Debug-

11

iphonesimulator/KitchenSink.app -url http://10.0.1.44/concerto -
username bob@acme.com -password secret

MakeAppTouchTestable will configure your app, and create a new Mobile App object
in the CloudTest repository. The Mobile App object created will have the auto-
created URL Scheme in its Launch URL field.

TIP: In this basic example, we do not use MATT's launchurl flag to create a
launch URL. In which case, MakeAppTouchTestable will auto-generate the
URL for us. If the flag is used, be sure to avoid spaces and underscores in the
launch URL, as they will cause an error.

If a mobile app object by the name KitchenSink didn't already exist on the CloudTest
instance's tenant then the following appears:

Processing App...

App processed successfully.

TouchTest enabled app is now available at:
/Users/<username>/Documents/Demo/KitchenSink/build/iphone/build/Debug-
iphonesimulator/KitchenSink_TouchTest.app

Mobile App Object "KitchenSink" representing your Application "KitchenSink"
has been created in CloudTest Repository.

If a mobile app object by the name KitchenSink did already exist on the CloudTest
instance's tenant then the following appears:

Processing App...

App processed successfully.

TouchTest enabled app is now available at:
/Users/jgardner/Documents/Demo/KitchenSink/build/iphone/build/Debug-
iphonesimulator/KitchenSink_TouchTest.app

Already Have A Mobile App Object By This Name. Please Change The Name And
Try Again.

You should manually create an object corresponding to your Application using
Application ID: touchtest-18284700-303c-428c-9c2d-14aba175dc76://

A number of MATT flags are provided to manage the launch URL requirement,
including overwriteapp, donotcreateapp, and launchurl. When managing your
launch URL(s), it is important to consider whether other users are also using the
same mobile app object in CloudTest.

12

13

Making an IPA file TouchTestable

The dynamic instrumentation method for IPA uses the MATT parameter –ipa and
requires the signingidentity and provisioningprofile flags. Omitting these
flags will result in an .app file being created rather than the expected TouchTestable
.ipa.

1. To instrument an IPA using the MakeAppTouchTestable utility, run:

sh MakeAppTouchTestable MakeAppTouchTestable/bin/MakeAppTouchTestable
-ipa <compiled IPA> -url <CloudTest URL> -username <CloudTest user
name> -password <CloudTest password> -signingidentity "iPhone
Distribution: <Distribution Name>" -provisioningprofile
"/Users/<username>/Documents/Name.mobileprovision"

where:

• <compiled IPA> is the full path to the compiled iOS .ipa file

• <iPhone Distribution: <Distribution Name> must be a valid iOS
Distribution signing identity

• The provisioning profile file path must refer to a valid provisioning
profile

Note: One and only one of the project file, IPA, or app file can be specified
when using the MATT utility.

where:

• <compiled IPA > is the full path to the compiled iOS .ipa file

Here is a complete example using -ipa:

sh MakeAppTouchTestable MakeAppTouchTestable/bin/MakeAppTouchTestable
-ipa ~/Documents/Demo/KitchenSink/build/iphone/build/Debug-
iphoneos/KitchenSink.ipa -url http://10.0.1.44/concerto -username
bob@acme.com -password secret -signingidentity "iPhone Distribution:
Bob Doe" –provisioningprofile
"/Users/username/Library/MobileDevice/Provisioning Profiles/20454FCB-
7B8C-4996-BDD3-E660DB279261.mobileprovision"

If a mobile app object by the name KitchenSink didn't already exist on the CloudTest
instance's tenant then the following appears:

Processing App...

14

App processed successfully.

TouchTest enabled app is now available at:
/Users/jgardner/Documents/Demo/KitchenSink/build/iphone/build/Debug-
iphoneos/KitchenSink_TouchTest.ipa

Mobile App Object "KitchenSink" representing your Application "KitchenSink"
has been created in CloudTest Repository.

If a mobile app object by the name KitchenSink did already exist on the CloudTest
instance's tenant then the following appears:

Processing App...

App processed successfully.

TouchTest enabled app is now available at:
/Users/jgardner/Documents/Demo/KitchenSink/build/iphone/build/Debug-
iphonesimulator/KitchenSink_TouchTest.app

Already Have A Mobile App Object By This Name. Please Change The Name And
Try Again.

You should manually create an object corresponding to your Application using
Application ID: touchtest-25df433e-d852-4475-bcf3-eeadfb9e5e33://

A number of MATT flags are provided to manage the launch URL requirement,
including overwriteapp, donotcreateapp, and launchurl. When managing your
launch URL(s), it is important to consider whether other users are also using the
same mobile app object in CloudTest.

Making a Titanium Project (Static Instrumentation)

The static instrumentation method for project uses the MATT parameter project on
the Titanium project directory.

1. In Terminal, navigate to the MakeAppTouchTestable folder you created above.

• For example, cd ~/Documents/Demo/MakeAppTouchTestable.

• From the MakeAppTouchTestable folder, run

sh MakeAppTouchTestable MakeAppTouchTestable/bin/MakeAppTouchTestable
-project <Titanium project directory> -url <CloudTest URL> -username
<CloudTest user name> -password <CloudTest password>

where:

15

• <Titanium project directory> is the path to the project folder representing
your project (for example, the folder where you downloaded KitchenSink). It is
not necessary to specify beyond the folder.

Here is a complete example:

sh MakeAppTouchTestable MakeAppTouchTestable/bin/MakeAppTouchTestable
-project ~/Documents/KitchenSink -url http://215.77.85.116/concerto -
username bob@acme.com -password secret

MakeAppTouchTestable will configure your project, and create a new Mobile App
object in the CloudTest server repository. The Mobile App object created will have
the auto-created URL Scheme in its Launch URL field.

If a mobile app object by the name KitchenSink didn't already exist on the CloudTest
instance's tenant then the following appears:

Mobile App Object "KitchenSink" representing your Application "KitchenSink"
has been created in CloudTest Repository.

Or, if the mobile app object already exists in the CloudTest instance:

Already Have A Mobile App Object By This Name. Please Change The Name And
Try Again.

You should manually create an object corresponding to your Application using
Application ID: touchtest-627312b8-425a-405b-a83b-fa011d076584://

As noted elsewhere, the launch URL of the app on the device must match the launch
URL in the CloudTest instance, Mobile App.

A number of MATT flags are provided to manage the launch URL requirement,
including overwriteapp, donotcreateapp, and launchurl. When managing your
launch URL(s), it is important to consider whether other users are also using the
same mobile app object in CloudTest.

16

Inspecting Changes to the Titanium Project (Static)
The MakeAppTouchTestable utility makes some additions and changes related to
implementing those changes in your Titanium project. The following additions are
made.

• Expand the project folder and note the asterisks (*) indicating changes to the
project. These include the new backup folder, the modules folder, and
tiapp.xml file modifications that should now be saved.

• TouchTest Module files are added to the modules folder.

17

• In addition, MakeAppTouchTestable adds the following code to implement the
module. In the tiapp.xml file:

o An iOS plist section has been added to implement the URL scheme:

18

Deploy the TouchTestable App
Choose either the Dynamic or Static method for making the mobile app
TouchTestable.

Install from Titanium Studio (Static Instrumentation)

Once the project has been made TouchTestable using the MATT, project flag, you
are ready to deploy it to the device or simulator.

1. Select the Project node for the app (i.e. KitchenSink) and right-click to select
Install to iOS Device.

19

2. The Run on iOS Device box appears.

Note that if the logged in Titanium Studio user is not enrolled in the iOS Developer
Program, this is indicated in the box (shown below).

3. Ensure that the iOS device is connected to the desktop client running Titanium
Studio.

20

4. Click Finish to build the project.

TIP: Be sure to sync via iTunes, ensuring that the device's Apps tab has
KitchenSink set to "Install." This must be done each and every time
that you use the Install to iOS Device command.

Install from the Command Line (Dynamic Instrumentation)

Using the newly TouchTestable APP or IPA you can now easily:

• Install the TouchTestable app to an iOS device or simulator.

SOASTA provides the iOSAppInstaller Utility for this purpose. You can download the
latest iOSAppInstaller Utility from the Central > Welcome page, Downloads section of
your own server instance.

21

Unzip the utility at this time if you have yet to do so and note the contents of the
resulting iOSAppInstaller folder.

Unzip the utility at this time if you have yet to do so and note the contents of the
resulting iOSAppInstaller folder.

• For a Simulator, use:

./bin/ios_sim_launcher --appbundle <path to KitchenSink_TouchTest.app
file>

• For an iPhone or iPad, use:

./bin/ios_app_installer --ipa <path to KitchenSink_TouchTest.ipa file>

22

Registering Your Device to Use TouchTest™
The TouchTest™ Agent is responsible for launching the apps that are being tested. It
is a web application that is served from the CloudTest server and runs in mobile
Safari on iOS devices. To get started, browse to the TouchTest Agent URL on the
mobile device and perform the one-time registration steps that will enable your
device for use with TouchTest.

Note: If you clear your cookies on the given mobile device after registration,
you may need to register your device again so that TouchTest™ can
recognize it. This does not consume an additional license.

23

1. On the mobile device, launch Safari and point it to:

http://<CloudTest URL>/concerto/touchtest

The following screen appears.

TIP: If you're using a Simulator that is running an iOS version prior to iOS
7, use the "Tap here if this is a simulator" link (shown above) to
proceed. This link will appear below the Login button in all
configurations that require it. This link doesn't appear in iOS 7 or
after.

2. Login using your SOASTA CloudTest user name and password.

If the device is not registered, the Register Device page below appears.

24

Note: If you clear your cookies, you may need to register your device again
so that TouchTest™ can recognize it. This does not consume an
additional license.

The Unique Device Identifier (UDID) will be used to register the mobile device for
use with TouchTest™ in iOS7 or after, for earlier iOS versions, the registration will
also use a profile.

3. Click the Register Device button to continue.

25

a. First, the Install Profile screen appears. Click the Install button to
proceed.

b. An alert appears to indicate that mobile device settings will be
changed. Click Install Now to proceed.

c. If a passcode is in effect on the mobile device, an additional prompt will
appear to authorize the profile installation.

26

4. When prompted, give the TouchTest Agent a name. For example , in our
screenshots the device is SOASTA Demo iPad. Note that this name will be
used throughout the product to refer to this device. Once entered the device
name can only be changed by an Administrator.

5. Once this name is entered, click Submit for administrator approval.

Once the request for Administrator approval has been made, the TouchTest
Agent will continue to poll CloudTest for approval.

 It is not necessary to keep the TouchTest Agent running while this
approval is pending. The TouchTest Agent will resume polling for its
approval once restarted.

If the Mobile Device Administrator approves your device, the "Connected" page will
appear the first time TouchTest™ is launched in Safari on the approved device. On
subsequent launches click Login to Connect and Logout to Disconnect.

27

Approving a Mobile Device (Administrator Only)
The TouchTest™ Mobile Device Administrator has the responsibility to approve or
reject the devices attempting to join testing. Administrators will use the following
steps to approve/reject the devices attempting to join.

1. Login as the user with mobile device administrative rights.

2. Click Central > Device Clouds

When you do so, the Device Agents list displays those devices in queue by name.
Additionally, the model (iOS device type), OS (iOS version), and current status of
the TouchTest™ agents are displayed in the list columns.

28

Those devices that have the status Pending Approval need administrative attention:

3. Click Approve to complete adding a device and Reject to deny its access.

Note: CloudTest Lite/TouchTest Lite users may approve a single device
only and that device cannot be removed. Approval should only be
performed on the intended single device.

Associating Mobile Apps with a Device

Once a device is approved, use the following steps to assign one or more mobile
apps to that device.

1. In Central > Device Clouds, select the mobile device.

2. In the lower panel, click the Mobile Apps tab. If necessary, use the Maximize
button to increase the workspace.

3. Locate and check the Mobile App(s) that you want to authorize this device to
access. For example, KitchenSink.

29

4. Click Save on the lower panel toolbar.

30

Recording a TouchTest™ Scenario
Once the TouchTest Agent profile is installed and device access is approved you are
ready to record and playback your TouchTest.

• Create a new test clip within CloudTest®

• Click Record within the Clip Editor and then choose Mobile App Recording
and specify the Device Agent and the mobile app whose actions you want to
record.

These and the following additional configuration steps are described in the remainder
of this tutorial.

• Composing a TouchTest™ Clip

• Playing back a TouchTest™Composition

• Analyzing TouchTest™ Composition’s Results

31

Create a Simple TouchTest™ Clip using KitchenSink
Create a new clip that will be used to perform mobile app recording and serve as the
basis for your first test composition.

1. Login to CloudTest on your desktop computer and select Central > Clips, and
then click New on the Central toolbar.

A new Untitled Test Clip opens in a Clip Editor tab. A Record pop-up identifies
the Record drop-down.
2. Once ready, click the Record drop-down and then select Record Mobile App.

32

The Choose a Device Agent and Mobile App wizard appears.

Note: If the Mobile Device Administrator has completed the steps above to
associate one or more mobile apps with the device, those will appear
in the Mobile App list whenever that device is selected. If you are the
Mobile Device Admin you should perform those steps yourself (as
noted above in Approving a Mobile Device).

3. Select the TouchTest Agent that you created above and also select the mobile
app.

4. Click the Record button in the wizard once your selection is made. TouchTest
Agent will launch the selected app on the selected device.

5. The TouchTest Agent launches in Safari on your mobile device.

33

Once successfully logged on, its Status will be Connected.
6. The mobile app launches to its initial screen.

7. Perform the planned mobile app user interactions on your mobile device. In
the case of our example, record the following in KitchenSink after the Controls
view appears:

• Tap Button

• On the Button screen, tap the button that says "Click Me" and then tap it three
more times.

• Return to Controls (top left)

• Tap Text Field

• Tap Events

• Tap Focus

• When the text field has focus, enter "Test" and tap the Return key

34

• Tap Test Field (top left) and Controls (also top left) to return to the original
view.

For each app action you perform, the Clip Editor adds an app action to the clip.

• Once the relevant interactions have been recorded, click the Record button
again to stop the recording (the Record button will appear as above after
recording is stopped).

• Switch the Clip Editor to List view using the Icon/List button on the Clip Editor
toolbar in order to see more inline details about the app actions that were
added.

• Click Save on the Clip Editor toolbar. In our example, we gave the clip the
name, Demo Clip for KitchenSink.

TIP: It is possible to proceed to create and play a composition at any
point after Recording is completed.

35

Adding an Interval Delay between Each Action

In the following steps, we will add an interval delay to the test clip. This practice is
entirely optional. This type of delay will stretch out the time between all the recorded
app actions.

Imposing delays using the Interval Delay setting can make the test more viewable
during test playback.

1. Click the Properties tab in the minimized sub-panel and then select the Clip tab
at the top of the pane (the Clip tab may already be visible if properties are
already open from the prior exercise).

2. In the Property Type list, click Clip Properties.

3. In the Clip Properties panel on the right, enter an Interval Delay in the given
field. For example, 2000 ms. Entering 2000 adds a two second gap between
each app action in the given test clip.

4. Click Save on the Clip Editor toolbar.

36

37

Create a Composition
With your test clip open in the Clip Editor, you are ready to create and play a new
test composition using this test clip.

1. To create a new composition from your test clip, click the Open in Test
Composition drop-down in the upper-right corner of the Clip Editor toolbar
and choose from among:

• Open in Test Composition

Choose Open in Test Composition to add this clip to a new draft
composition where additional composition parameters can be set in the
Composition Editor, Edit tab before proceeding to play.

• Play in Test Composition

Choose Play in Test Composition to add this clip to a new draft composition
where it will immediately be played in the Composition, Play tab before
proceeding to edit parameters or play.

• Debug in Test Composition

Choose Debug in Test Composition to add this clip to a new draft composition
where it can be debugged in the Composition, Debugging tab before
proceeding to edit parameters or play based on debug actions.

When you choose Open in Test Composition, the Composition Editor appears with a
draft test composition including the new test clip in Track 1.

38

When opened from the Clip Editor, the device that was used to record the clip is
automatically selected in the track's Location dropdown (i.e. SOASTA Demo iPad is
selected in that field above).

TIP: To playback this test composition on another device, click the drop-
down and make another selection. This preference can also be set at
the clip level.

2. Click Save on the Composition Editor toolbar and give the test composition a
name or accept the default name.

For example, Demo Composition for KitchenSink.

39

Playing a Composition
Perform these additional steps while the test composition is open in the Composition
Editor.

1. Ensure that the TouchTest Agent status is “Connected” on the mobile device
via Safari.

2. In the Composition Editor, click Play to run the test composition. The mobile
app actions performed when the clip was created are played back on the
device.

While the test runs, the Composition Editor automatically switches to the Play tab,
and by default, the Result Details dashboard displays.

The Composition Editor’s Status Indicator changes to “Playing.” Meanwhile, the
mobile app is launched on the specified mobile device(s) and the actions in the test
clip are repeated precisely as it was recorded.

40

Result Details
The Result Details dashboard helps to discover the cause of errors in your test, if
any.

While play continues results are posted in the Composition Editor, Play tab, Result
Details widget.

If the composition fails for any reason, the Result Details dashboard clearly indicates
that and presents details as to why.

41

For a simple composition such as this one, using the one clip you recorded above,
success is the most likely outcome.

42

Navigating Result Details
Click to expand the nodes in the Navigation Tree on the left as they appear.

Result Details uses a Cover Flow (top panel to the right) to display the test
composition’s stream as it occurs.

This stream is also shown in the tree as elements are executed during play. As play
continues, the focus is set to the last executed element. The current container is
expanded while the prior containers are closed. Clicking an element during play will
halt this auto-focus-to-the-last-executed behavior.

o Click any object in the Cover Flow at the top to center it and display its details
and play statistics in the panes below.

o Use the scrollbar to browse the flow.

o Select any item to show its low-level details in the Summary panel below.

43

o Locate and select App Action2, which has the locator, text=Click Me
(depending how closely you followed the suggestion above this locator might
be in a different action, whatever the case try and locate it).

44

Identifying and Analyzing Common Errors
Despite the successful results above, in some cases your test may not succeed
initially. As test advocates, we are often more interested in such failures. The way we
approach them is first to identify where they occurred and then to analyze what
occurred.

Network or Communication Errors

Initial errors in a simple test like the one above are also often simple network or
configuration errors having to do with test staging. They frequently are related the
state of the Device Agent (e.g. if the device agent is not connected when you click
Play).

For example, if the Device Agent is not connected or is not responding the
Composition Editor’s Status Indicator will indicate “Test Composition failed” (shown
below).

• Click Details to display additional information in a dialog box.

In some cases, the TouchTest Agent may have been started but is no longer
responding (such as was the case with the Device Agent timeout error shown below).
In such cases, refresh the Safari page for the TouchTest Agent, or Logout and re-
login to the TouchTest Agent.

45

App Action and Other Errors

CloudTest reports all failures and marks test successful or unsuccessful by the
Failure Actions set within it. Failure Actions are set stringently by default to fail the
test for any error and show that failure in red.

Result Details clearly indicates the type of test failure that has occurred in a given
case. The red "X" in the Navigation Tree easily distinguishes failures on specific app
actions you recorded, and when the error item is selected in Result Details.

Note: In the case of the above error, it was created intentionally by
changing the locator in App Action1.

46

Advanced Clip Editing
Now that we’ve played this simple test composition successfully, and discussed how
errors are presented when they occur, let’s return to the test clip to inspect the clip
elements and do some additional parameterization.

1. Click the Clip Editor tab if it’s still open, or right-click the test clip in the
Composition Editor and choose Open in New Tab.

The List view is useful while clip editing, because it shows all the parameters (8th
column to the right) and their corresponding inputs in one tabular view.

TIP: In the above, note that the assigned locators for App Action2, App
Action3, and App Action4, all of which correspond to the button taps
we performed, use the text=*.

When additional parameters are present they are displayed to the right of the
Parameter 1 column.

Planning a Complex Test in KitchenSink
Your first clip using the sample app (or your own app) was probably relatively simple.
CloudTest clips of great complexity can also be devised.
For example, in the sample clip shown below, we recorded actions from Buttons and
Text Fields.

47

In the remaining sections of this tutorial, we will add outputs, validations, and then
finally, we will customize a locator using a technique called "TouchTestID".
TouchTest Driver is already in place in projects where MakeAppTouchTestable has
been applied and provides TouchTestID support.

Increasing Test Clip Complexity
1. Open the clip created in the steps above in the Clip Editor.

In the example below, we identified and selected all the app actions created
via the steps we performed in KitchenSink's Button section, then using the
right-click Action menu we chose the Create a Group command.

48

Afte this command is applied, the selected actions are placed into a new group,
Group 1.

TIP: You can repeat this command for each selection. It is also possible to
record each section, halt recording, organize those app actions into a
group, and then restart recording from that point.

49

Inspecting App Action Details

Examine elements and properties for any App Action by selecting it in the workspace
above and then double-clicking it. When you do so, the <Selected: Action Name>
tab displays the contents of the selection in its own pane.
In the test clip below the recorded AppAction2 is open in the lower panel. The type of
app action, type, represents the user name entered on the SOASTA Demo app login
page.

1. In the Clip Editor, locate and double-click the app action you already located
above (the one with the "Click Me" button).
In our sample clip, this is Selected: AppAction2. This app action has five
Inputs: Locator, Tap Count, Touch Count, Duration, and Tap Offset.

50

App Action Elements and Properties

While the Selected: Action tab is active, the Action level properties are shown in the
tree on the left.

1. Select the top-level node in the tree (as shown below)

• General, Repeat, and Custom Properties (for the action only; not for the entire
clip) tabs appear on the right. Note that Error Handling here is set to Errors
should fail the parent by default.

• Other settings, including Waits, Inputs, Outputs, Validations, and Property
Sets can be set by clicking the given node in the tree and then performing the
desired action on the right.

1. In the Selected: AppAction2 tab (or for any selected app action), familiarize
yourself with the available elements and properties.

TIP: These settings are also found inline in the Clip Editor, List view
whenever an app action is expanded. In the sections below, we will
add complexity to app actions using both methods.

51

• Inputs (Locator, Scale, Precision, Content Offset)

Locators are unique characteristics that identify a specific element or
object on a mobile device. Locators come in many forms, including links,
IDs such as those defined within CSS, and XPath expressions.

• Waits (Pre-Action Waits , Post-Action Waits)

Waits are commands that tell CloudTest not to execute an Action until a
condition is met (pre-action waits), or to not continue processing the
outputs, validations and property sets of the Action until a condition is met
(post-action waits).

• Outputs
Outputs specify what is to be shown in the Result Viewer for a given
Action. Typical outputs include “captureScreenshot”, “outputElementText”,
and “outputInnerHTML”. A single Action can have an unlimited number of
outputs.

• Validations

Validations verify some content or event occurred as expected and has a
corresponding Failure Action. App Action validations can range from
simple true/false conditions to more complex conditions. A single App
Action can have an unlimited number of validations. Any validation failures
will be exposed in the Results Dashboard.

• Property Sets

Property Sets give you the ability to take text or data from the app you are
testing and store it in a custom property for use in a subsequent action or
message.

SOASTA CloudTest includes three property sets, all of which have
relevance for refining and editing a selected App Action.

o Custom Properties

Custom Properties are user-defined properties that are available to all
clip elements, including Actions. Custom properties can be thought of

52

as backdoors that allow access to portions of the object model more
easily.

o System Properties

System Properties are available to all clip elements, including Actions.
SOASTA CloudTest defines system properties. For example, a test clip
has system properties such as name, repeat timing, label, and more.

o Global Properties

Global properties are defined within the Central > Global Properties List
and are “global” within the entire SOASTA CloudTest environment—
and can be used across compositions.

Adding a Text Validation

Next, we will add a validation on AppAction1. The response to this and other actions
will contain information worth validating in many cases. The remaining steps
demonstrate how to do simple validation in CloudTest.

1. Note the content of the given app action. For example in App Action1 of our
sample clip we were on the main Controls page, and the first action we took
was to tap Button.

2. If it’s not already open in the lower panel, open App Action1 now by double-
clicking.

3. Click Validations in the list and then click the green Plus sign in the
Validations panel on the right.

An Action: type form is added to the right panel.

4. In the Command list, a list of commands is presented.

53

Click the drop-down and select verifyElementText. This Command verifies
that the specified text is in the rendered field.

5. In the Locator field, enter the field name shown above. For example,
text=Button.

6. In the Match field, accept Exact Match and enter the expected text. For
example, Button.

7.

TIP: If you're not sure which app action pertains to an action you took
while recording, try adding an Output, captureScreenshot, and then
play the composition. The screenshot is shown in the Result Details,
Outputs section. See Adding an Output (next heading) if you're not
sure how to do this.

8. Leave the default Fail the Clip set in the Failure action field.

9. Click Save on the Clip Editor toolbar.

Adding an Output

In the following steps, we will add an output to an App Action in the test clip we
created above. This output will capture a screenshot of the test clip element as it is
executed during runtime and this screenshot will be integrated into the test results.

1. Once again, select the Action to display its properties in the sub-pane
below.

54

1. Click Outputs in the list on the left, and then in the Action: type field just to
the right, click the green Plus sign again. A new output is added to the
Outputs list and the details are shown in the Element Info field.

2. The default output is captureScreenshot.

3. Check Only if there is an error if the output is desired only in the event this
AppAction produces an error. Otherwise, leave it unchecked. For our example,
we will leave it unchecked to ensure we get an output in every eventuality.

4. Click the Green Plus (+) icon and add a second Output.

5. In the Command list, scroll to the bottom and set to outputXMLHIerarchy.

6. Click Save on the Clip Editor toolbar.

55

Adding a Label Validation

Finally, we will add a label validation on App Action2. In the subsequent sections, we
will then alter this label using a TouchTestID.

1. Select and expand App Action2 in the Clip Editor, List view.

Note: The default locator assigned to App Action2 by TouchTest uses the
button label text, Click Me. This is fine in most cases, however, when
we perform the tap action the button's label changes to "I am
Enabled." Therefore, validating that label text using the locator
"text=Click Me" will fail (shown below).

2. Inspect the locator array for App Action2 by selecting the Locator drop
down. Note that it includes classname=UIButton[1]. We will use this as the

56

specified locator in the label validation, instead of the text value that is
present only before we perform this action.

3. Hover your mouse over the expanded App Action2 and then click the green
checkmark to add a validation form into the workspace.

4. In the newly added Validations form, chance verifyElementPresent to
verifyElementLabel.

5. In the Locator field, enter the locator, classname=UIButton[1].

6. Click Save on the Clip Editor toolbar.

7. Return to the Composition Editor tab once again and click Play.

57

Analyzing Results
Result Details has several methods for navigating through the test results. Click the
checkboxes in the cover flow to quickly display messages (or Actions) only (within a
single band, track, test clip, or chain.

In the best-case scenario, the parameters added in Advanced Clip Editing work
without a hitch. We can easily verify the status of our parameters in Result Details.

• Expand the Navigation Tree, including Group1, until App Action1 is in
display and then select it as shown below.

1. Note that for App Action 1 (selected on the left) that the text validation passed.
This is noted on the Summary tab, Waits and Validations section.

58

2. In the Waits and Validations section, click verifyElementText and note that
details in the Outputs section are highlighted and scrolled for your inspection.

3. Scroll down, if necessary, to view the captureScreenshot output defined for
App Action1 in our example.

4. Double-click the screenshot to get a closer look.

Note: Since we didn’t check Only if there is an error in the Output form a
shot of the successful action is included in this result.

5. Scroll down further, if necessary, and locate outputXMLHierarchy.

6. Expand the Output section.

7. Use the browser's Search in page function to locate the button text "Click
Me."

Note that TouchTest has recorded the UIButtonLabel text as equal to "Click Me"
but that if you search for the other values (I am Enabled or I am Disabled) they are
not found.

8. Click the Events list tab for the given selection to view action-related events,
including validations. Click the Details arrow to inspect any event’s details.

59

9. Return to the Navigation tree and select App Action2.

10. Note that the label validation on App Action2 passes using these settings
discussed above.

60

Adding TouchTest™ IDs to an iOS App in Titanium
A TouchTestID is a reliable locator that is added to project source code by
developers and is then used by testers as a convenient hook.

This technique is useful in testing situations, most especially where locators are
recorded successfully by TouchTest, but which in reality have a an unreliable, or
variable value.

For example, in an app that has a navigation bar on top the element on that bar
might record a different locator classname=UILabel[x] where each time x has a
different integer value (i.e., 24, 27, 50). In such a case, normal recording techniques
will prove insufficient.

This tutorial presents a basic scenario for using TouchTestIDs with Titanium Studio
projects in iOS.

In the following section, we will add a TouchTestID to the Titanium project that will
change the locators recorded earlier in our example clip. Once we have done so, we
will then reinstall KitchenSink to the device once again using the Add to iOS Device
command, and then re-record the test clip using the same scenario as before.

Refer to the SOASTA TouchTest Developer's Guide, Adding TouchTestIDs to an iOS
app in Xcode section for a brief Xcode example.

Refer to the SOASTA TouchTest Advanced Tutorial for a longer example
implementation of TouchTestIDs in an iOS environment, as well as additional
examples using accessors such as outputs, validations, and waits to enhance mobile
testing. Additionally, an App Action References is included in this document.

The TouchTestID scenario included in the Advanced Tutorial also appears in the ,
Zero To Test 3 – TouchTestIDs instructional video.

61

Supported Titanium Components

TouchTestIDs are supported on ALL the Titanium UI components that inherit
from Titanium.UI.View.

Components that do not inherit from Titanium.UI.View are not currently supported.

Refer to the complete list of components that inherit from Titanium.UI.View here:

The touchTestId is added to the project using the JSON-style parameter from the
factory methods : Titanium.UI.createXxx(...).

For example,
var button = Titanium.UI.createButton({
 title: 'Hello',
 top: 10,
 width: 100,
 height: 50,
 touchTestId: 'MyButtonId'
 });

See Titanium.UI.createButton.

62

Identifying the Component to Modify

Use the following steps to determine which component in your project to modify by
adding TouchTestIDs.

1. Identify the source file that has the button that is used in AppAction 2, 3, and
4. In this case, that file is button.js, which can be found in the project at
master/Resources/ui/common/controls/button.js.

2. Open the button.js file.

3. Locate the "Click Me" string using Find.

4. Next, add the following new line after the line title:'Click Me',

 touchtestId:'TouchTestButton'

5. Your modification should looks like this:

6. Save button.js, refresh the Titanium project, and then right-click the master
node and choose Add to iOS Device, ensuring that you follow through all the
steps including the iTunes sync.

63

Re-Record the KitchenSink Clip with TouchTestIDs

Now that we’ve successfully added TouchTestIDs to the KitchenSink project, and
have that up and running (on either a mobile device or a simulator), let’s return to the
Clip Editor and record a new version of the Fool’s Mate chess game.

TIP: Don't miss the TouchTestID video tutorial, Zero To Test 3 –
TouchTestIDs video.

1. Click the Record button and select Record Mobile App.

2. The Choose a Device Agent and Mobile App wizard appears. Select the
device agent and app just as you did while recording the first time.

3. Perform the same planned mobile app user interactions on your mobile
device. In the case of our example, record the following in KitchenSink after
the Controls view appears:

• Tap Button

• On the Button screen, tap the button that says, Click Me, and then tap that
same button three more times (pause slightly on the first tap until the text "I
am Enabled" appears.

• Return to Controls (top left)

• Tap Text Field

• Tap Events

• Tap Focus

• When the text field has focus, enter "Test" and tap the Return key

• Tap Test Field (top left) and Controls (also top left) to return to the original
view.

64

4. Once the relevant interactions have been recorded, click the Record button
again to stop the recording (the Record button will appear as above after
recording is stopped).

For each app action you perform, the Clip Editor adds an app action to the clip.
Note that in the Clip Editor List view (shown below) that App Action 2 through 4
now have id=TouchTestButton as their value.

5. Now that we've added more reliable locators using TouchTestID, let's revisit
three of the outputs and validations that we used before. Do all of the
following:

a. Add the Output, outputXMLHierarchy, to App Action1

b. Add the validation, verifyElementText, to App Action2 using
id=TouchTestButton and I am Enabled as the Exact Match

c. Add the Output, captureScreenshot, to App Action2

65

6. Next, let's add some additional text validations:

a. Add the validation, verifyElementText, to App Action3 using
id=TouchTestButton as the locator and "I am red" as the exact match
value

b. Add the validation, verifyElementText. to App Action4 using the locator
id=TouchTestButton and "White text" as the exact match value

7. Save the test clip.

8. Using the Play in Test Composition command on the Clip Editor toolbar, run
this clip in a new Draft Composition.

9. In our example test composition, all of this succeeded right off the bat.

• In Result Details, we selected App Action1 and used the browser's Search
in page function to locate the button text "Click Me" in the Result Details,
Output section and found that the XML Hierarchy showed the addition of
our TouchTestID.

• We selected App Action2 and used the Result Details, Summary tab to
inspect the details for the text validation "I am Enabled"

66

• We selected App Action3 and used the Result Details, Summary tab to
inspect the details for the text validation "I am red"

• We selected App Action4 and used the Result Details, Summary tab to
inspect the details for the text validation "White text"

SOASTA, Inc.
444 Castro St.

Mountain View, CA 94041
866.344.8766

 http://www.soasta.com

