
TouchTest™ Bamboo CI for iOS Tutorial

 	
	

SOASTA TouchTest™ Bamboo CI for iOS Tutorial
©2015, SOASTA, Inc. All rights reserved.
The names of actual companies and products mentioned herein may be the
trademarks of their respective companies.
This document is for informational purposes only. SOASTA makes no warranties,
express or implied, as to the information contained within this document.

 	
	

Table of Contents
..CloudTest Continuous Integration Support 1

..About This Tutorial 1
..Bamboo iOS, Cocoa and Xcode Support Plugin 2

...Mac and iOS Device Prerequisites 3
..TouchTest Utilities and Plugins 5
...Test Composition Prerequisites 5

...Creating a New Plan 7
...Configure Additional Tasks 10

...Build the IPA 11
...Download the TouchTest Utilities 16

..Run MakeAppTouchTestable 20
..Deploy the IPA Archive on iPhones and iPads 22

..Create the Test Reports Folder 23
...Using SCommand to Play One or More Compositions 24

...Adding the JUnit Parser 26
..Building the Project 28

...Inspecting TouchTest Results in Bamboo 30

 i
	

CloudTest Continuous Integration Support
You can display SOASTA's JUnit-friendly test results inside other JUnit-friendly
applications. In Bamboo, just a few simple steps are necessary to integrate test
composition results into the Report Summary dashboard. One, to create a folder for
JUnitXML-compatible test output XML files, and then another to specify that folder in
your Bamboo plan using a JUnit Parser task.

About This Tutorial
This tutorial provides guidance for two audiences:

• Users who would like to add iOS Testing using Xcode to a pre-existing Bamboo
setup

• Users who are iOS Developers starting out with TouchTest who would also like to
add TouchTest to a continuous integration setup using Bamboo

This tutorial guides the user through the process of using the Bamboo continuous
integration (CI) tool with TouchTest by making a sample Xcode project touchtestable, as
part of a small, but complete CI scenario that includes a successful test composition.
In order to do this, we'll first define a Bamboo project, a plan, ensure that we have the
iOS, Cocoa, and Xcode plugin installed in Bamboo, and then add tasks to the plan's
Default Job.
Once a project and plan are established, the following tasks are defined:

• A Source Code Repository task is added to retrieve the source project, Stockfish,
using Bamboo's built-in git support
Note: A version of the Stockfish chess game, an open-source project

available from GitHub, has been customized to include the Xcode
project that is used as the example project. You can, of course,
substitute your own mobile app’s source and Xcode project for this
example.

• A script task is added that will download the necessary TouchTest utilities (and
always ensure the latest)

• A script task is added to run the MakeAppTouchTestable utility on the Xcode
• An Xcode task is added to build and deploy an IPA using Bamboo's Xcode

support
• A script task is added to create a folder in the working directory that will receive

TouchTest results (formatted as JUnitXML)
• A script task is added to run test compositions on specific mobile devices and

examine the test results using Bamboo's JUnit reports support
• A JUnit task is added to process test results

 1

TIP: If your organization is not already using Bamboo—refer to the
Atlassian Bamboo site to register, download, and install it.

Bamboo iOS, Cocoa and Xcode Support Plugin
In addition to Bamboo itself, ensure that the Bamboo iOS, Cocoa, and Xcode plugin is
installed before proceeding with the project creation steps. This is, of course, a
requirement of all Bamboo iOS development and not just of TouchTest.

1. Login to your Bamboo server as Admin and then click Administration.

2. Scroll down to the Plugins section and click Find New Add-ons (Find New Plugins
in earlier Bamboo versions).

Note: If Bamboo is running, use the alert box Pause button to pause the
server.

 2

http://www.atlassian.com/software/bamboo/overview
http://www.atlassian.com/software/bamboo/overview
http://www.atlassian.com/software/bamboo/overview
http://www.atlassian.com/software/bamboo/overview

3. Install the Bamboo iOS, Cocoa and Xcode Support plugin if it is not already
installed (as shown below).

4. Click Install. When you do so, the Install button is replaced by Manage.

Mac and iOS Device Prerequisites
One of the key steps during an iOS automated build is deploying the app to your test
device, without requiring any human interaction. Typical solutions (e.g. over-the-air
distribution) require that the user accept a prompt. SOASTA’s iOS App Installer Utility
includes two tools that silently deploy either an IPA file or an APP file.
You will need the following hardware and configuration:

 3

1. A dedicated machine running Mac OS X, with Xcode 4.2 or later. If you are using
Bamboo, this can be either the server or a Mac running the remote agent.

2. One or more tethered devices. If you have more devices than USB inputs, you
can use a USB hub. Note also that sufficient power to prevent the device from
running down unexpectedly should be available via that USB input. Simulators
can also be used.
A note on tethering: SOASTA TouchTest™ does not require tethering for
recording or playback. However, you do need to tether the device for silent
deployment of your app.

3. The physical iOS device(s) should have the iOS "Auto-Lock" setting set to
"Never".

4. At runtime, whenever scommand is called upon to play a test composition from
the command line, the TouchTest Agent must be running on the mobile device and
connected to the correct server instance (e.g. the ones defined in the Bamboo
tasks). TouchTest Agent registration steps are covered in the TouchTest for iOS
Tutorial.

 4

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf

TouchTest Utilities and Plugins
The following TouchTest software is downloaded in one of the three scripts tasks defined
below. It's a good idea to become familiar with them in their own right. Also, note that all
TouchTest utility software can be downloaded from the TouchTest, Welcome page, and of
course, is not limited to use in CI projects.

• MakeAppTouchTestable Utility (this utility will be called at the appropriate time
via a Bamboo job using an Execute Shell build step)

Note: This archive contains the necessary drivers upon which TouchTest relies.
The CloudTest user specified to run the MakeAppTouchTestable utility must be a
user with Mobile Device Administrator rights.

• iOS App Installer Utility (this utility contains two executables; the
ios_app_installer, which is used to install IPA files to iOS physical devices, and
the ios_sim_launcher, which is used to install compiled APP files to a simulator).
This archive contains two executable files:

o For deployment to Simulators, use the ios_sim_launcher executable found
in the iOS App Installer Utility at the appropriate time(s) via a Bamboo job
using an Execute Shell build step.

o For deployment to iPhone and iPad devices, use the iOS App Installer
Utility to deploy .ipa archives to the physical device(s). This executable can
be called at the appropriate time(s) via a Bamboo job using an Execute
Shell build step.

The appropriate executable will be called at the appropriate time(s) via a Bamboo
job using an Execute Shell build step.

• CloudTest Command Line Client (also known as sCommand, this command
line interface utility will be called at the appropriate time via a Bamboo job using
an Execute Shell build step)

Test Composition Prerequisites
This tutorial will call two compositions from the same Bamboo job that will "git" the
project, make the app touchtestable, deploy the app to the specified devices, and finally,
use sCommand to silently play the specified compositions.
If you’re a new CloudTest Mobile user, refer to the following documentation before
proceeding with this tutorial.

• Basic TouchTest recording is covered in the TouchTest Tutorial.
TIP: Refer to the "Registering Your Device to Use TouchTest™" section of

the TouchTest Tutorial to configure your mobile device for use within
your CloudTest instance.

 5

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf

• Advanced TouchTest recording, including the use of validations and other
accessors in the open source Stockfish mobile app, are covered in the TouchTest
Advanced Tutorial.
TIP: 	 The test clips shown in the result dashboards at the end of this were

created using the GitHub version of Stockfish used in this guide
simply by following the steps presented in the following two
Advanced Tutorial sections:
! Create a Simple TouchTest Clip – King Gambit Declined
! Advanced Clip Editing – Fool’s Mate

 6

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf

Creating a New Plan
The following steps require the Administrative privilege so be sure to login.

1. In top level Bamboo dashboard, click New Job.
2. In the top-right, click Create.

 7

6. Click Create a New Plan. The New Plan detail appears.
7. In the Project drop-down, select New Project (the plan can be part of a new or

existing project).
8. Enter the following:

• Project Name – TouchTest Tutorial
• Project Key – TTT (plan keys and project keys are usually upper case)
• Plan Name – Stockfish iOS
• Plan Key – STKIOS

9. In the Source Repository drop-down, select Git to follow this tutorial or your own
source control repository type.

 8

10. In the Repository URL field, enter:

https://github.com/elitecoder/stockfishchess-ios

11.Click the Configure Tasks button.

 9

https://github.com/elitecoder/stockfishchess-ios
https://github.com/elitecoder/stockfishchess-ios

Configure Additional Tasks
Clicking Configure Tasks on the New Plan detail page creates the Source Code
Repository task show in the page below. This task will get the latest version of the
sample project for each build.

Since we'd like to know right away if our Xcode project is going to compile, we'll build
the IPA file using Xcode first and run the build to demonstrate we're on the right track.

 10

Build the IPA
In this section, we'll add an Xcode Task and set it up to compile the Stockfish.xcodeproj
using a selected Apple SDK. Once this task has been added, we'll do our first build to
ensure that we can build the IPA.

1. In the Tasks lists, click Add Task. The Configure Tasks box appears.
TIP: 	 You can return to the Configure Tasks page by clicking Dashboard >

Stockfish iOS, and then the Edit button.

2. Select the Default Plan in the list and then the Tasks tab.

3. Click Add Task.

4. In the Task Types box, scroll down to select Xcode.

 11

An Xcode Task is added to the Default Job (in the tree on the left).

 12

6. In the Xcode Configuration form, enter the following:
• Task Description – Build IPA
• Apple SDK – iOS 6.1 (in this example)
• Project – Stockfish.xcodeproj (the real .xcodeproj name)
• Target – Stockfish
Note:	 If the Apple SDK field has no entries, click Administration, Server

Capabilities (in the first menu section on the left) and then on the
Server Capabilities page click Detect Server Capabilities.

This will add a server capability per Apple SDK that you have installed.

 13

7. Continuing in the Xcode Configuration form, check the Build an .ipa for iOS
Application Distribution box.

8. In the iOS Application Path, enter the app path: build/Release-iphoneos/
Stockfish.app.

9. Click Save to complete the Xcode Task.

 14

10.Before proceeding, enable the plan by checking Yes please!, and then Create.

Alternately, you can check Plan Enabled on the Configuration page.

11.Click Run, Run Plan—either on the Plan Summary or Configuration page to
perform the first plan build.

The Build Result Summary appears. If the IPA was built the success message appears.

 15

Download the TouchTest Utilities
Next, we'll add a script task that will use curl to download all the necessary TouchTest
utilities. The TouchTest utilities, including sCommand, should always be downloaded from
the CloudTest server with which will be used in tandem.

 Since this task will occur in every build our CI project will always use the latest SOASTA
tools.

1. Click Dashboard to return to the list of projects/plans.
2. Click the Edit button in row of the plan to edit.

The Plan Details page appears.

 16

3. Click Default Job in the list and then the Tasks tab to return to the Configuration
page.

4. In the Tasks lists, click Add Task again.
5. Select the Script task type.

 17

The new Script Task is added to the tasks list.
Enter a Task Description. For example, Download TouchTest Utilities.

 18

6. Next, we'll use the curl command to retrieve the utilities and unzip to extract them
in the working directory. Enter the following script code using your own server's
CloudTest URL (in this example, a CloudTest Lite instance with the IP address
10.0.1.6 is in use):
echo "Downloading iOSAppInstaller.zip from TouchTest server"
curl http://<CloudTest URL>/concerto/downloads/mobile/iOSAppInstaller.zip > ./
iOSAppInstaller.zip
echo "Installing iOSAppInstaller.zip"
unzip -o ./iOSAppInstaller.zip

echo "Downloading scommand.zip from TouchTest server "
curl <CloudTest URL>/concerto/downloads/scommand/scommand.zip > ./scommand.zip
echo "Installing scommand.zip"
unzip -o ./scommand.zip

echo "Downloading MakeAppTouchTestable.zip from TouchTest server "
curl http://<CloudTest URL>/concerto/downloads/mobile/MakeAppTouchTestable.zip
> ./MakeAppTouchTestable.zip
echo "Installing MakeAppTouchTestable.zip"
unzip -o ./MakeAppTouchTestable.zip

7. Click Save to complete the task.

 19

Run MakeAppTouchTestable
TouchTest™ includes the MakeAppTouchTestable, which will automatically add the
necessary components to an existing Xcode project to deploy TouchTest™, and
additionally, the utility will also create the Mobile App entry in CloudTest® .

1. In the Tasks lists, click Add Task and select the Script task type a second time.

2. In the Script Configuration form, enter Run MATT as the description.

3. Paste the MakeAppTouchTestable command into the script body. Do not use full
paths (since the build folder changes +1 at each build. Bamboo ensures that the
working directory is in use.

#Run MATT

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -project
Stockfish.xcodeproj -target "Stockfish" -url http://<CloudTest URL> -
username SOASTA_DOC -password secret -overwriteapp

where:
• <Xcode project file> is the actual name of the ".xcodeproj" file

representing your project (i.e. Stockfish.xcodeproj). In this case, only the
project name is necessary.

• <target name> is the name of the Xcode target you would like to modify. In
this case, Stockfish is the target name to modify.

• <CloudTest URL> is the server instance to connect. For example, a
CloudTest Lite server on a network using an Apple router might be located
at http://10.0.1.6/concerto.

4. Click Save to complete adding the task.

 20

5. In the steps above, we opted to create the Xcode step early in order to verify it
worked. This step actually needs to come after the Run MATT (since only after
MakeAppTouchTestable is applied is the project touchtestable). Drag Build IPA
into the fourth position in the list.

 21

 Deploy the IPA Archive on iPhones and iPads
In this section, we’ll create the script that will run the ios_app_installer to deploy the IPA
archive created in the prior section. Before starting, note the path to the downloaded iOS
App Installer Utility. The iOS App Installer Utility downloaded in the Download TouchTest
Utilities section contains two executable files—ios_sim_launcher and
ios_app_installer. From the working directory the executables were extracted to /
iOSAppInstaller/bin.
Deployment is achieved for both Simulators and iPad/IPhone devices using these
executables and the steps described below.

• For a Simulator, the ./iOSAppInstaller/bin/ios_sim_launcher -app command is
used
In order to deploy to a simulator, we must first build an APP file and then use that
APP file with the ios_sim_launcher

• For an iPhone or iPad, the ./iOSAppInstaller/bin/ios_app_installer -ipa
In order to deploy to a physical device, we must first build an APP file, followed by
building an IPA file, after which we can use the ios_app_installer.

1. In the Script Configuration form, enter the following (be sure to revise this example
to use your own paths):
#Deploy the app

./iOSAppInstaller/bin/ios_app_installer --ipa build/Release-iphoneos/
Stockfish.ipa

where:
• --ipa <ipapath> - is the path to the IPA archive built in the prior section.

The iOS App Installer Utility will deploy to all the tethered provisioned devices by default.
If you’d like to limit the deployment to specific devices use the following optional
parameters:

• --udid <list> - One or more device UDID in a comma-separated list, if
unspecified it install on all the connected iOS devices

 22

• --device <list> - device name list comma-separated, if unspecified it will install
on all the connected iOS devices

2. Click Save to complete adding this script task.
Create the Test Reports Folder
Next, we'll create another script task where we'll direct sCommand to output JUnitXML-
ready test results. This location must match the field you specify in the JUnit Parser
section (below).

1. Click Add Task and once again select the Script task type.
2. In the description field, enter "Create test reports folder."
3. Add a line to create the test result reports folder if doesn’t already exist:
#Create the test result reports folder if it doesn't already exist

mkdir -p test-reports

4. Click Save to complete adding this script task.

 23

Using SCommand to Play One or More Compositions
Next, we will add SCommand lines that will silently play the specified test compositions
on the specific CloudTest instance. Additionally, we will add arguments that will output
junitxml-compatible XML code that will appear in Bamboo for each test result.

1. In the description field, enter Play test compositions.
2. In the Script Configuration form, enter the following:
Run the first composition.

The result will be stored in the "test-reports/foolsmate.xml" file.

Bamboo will use this file to render the test report.

./scommand/bin/scommand \

 cmd=play \

 name="/SOASTA Tutorial/Advanced/Composition for Fools Mate Clip" \

 wait \

 format=junitxml \

 url=http://10.0.1.6/concerto \

 username=SOASTA_DOC \

 password=secret >test-reports/foolsmate.xml

 24

3. Enter any additional compositions for the task:
Run the second composition.

The result will be stored in the "test-reports/kingsgambit.xml" file.

Bamboo will use this file to render the test report.

./scommand/bin/scommand \

 cmd=play \

 name="/SOASTA Tutorial/Advanced/Composition for King Gambit Clip" \

 wait \

 format=junitxml \

 url=http://10.0.1.6/concerto \

 username=SOASTA_DOC \

 password=secret >test-reports/kinggambit.xml

4. Click Save to complete adding this script task.

 25

Adding the JUnit Parser
Finally, we will add the Bamboo JUnit Parser task, which will utilize the sCommand JUnit
output to incorporate test composition results into the Report Summary page.

1. In the Tasks lists, click Add Task.
2. In the Task Types box, choose JUnit Parser.

3. In the description field, enter Parse TouchTest results.

 26

4. Specify the default custom results directory. For example, entering **/test-
reports/*.xml will create a "test-reports" folder in the working directory.

5. Click Save to complete adding the JUnit Parser task. This completes creation of
the TouchTest CI scenario tasks. Now, we're ready to do a full build.

 27

Building the Project
Before you click Run, Run Plan, lets review ensure that the TouchTest Agent is running
on each device you want to test.

1. To build the project, click the "Run, Run Plan" link on any page where it appears.
The build will start and the Build Result Summary page appears.

After a short delay, you should see a progress bar appear on the left side of the page.
Click this progress bar to watch the build process "live" in the Console view.
You should see the following happen in the Live activity log for Default Job:

a. Bamboo checks out the source code from Git.
b. Bamboo downloads the TouchTest utilities extracts them into the working

directory.
c. Bamboo runs the MakeAppTouchTestable utility, which makes the Stockfish app

touchtestable.
d. Bamboo runs the build IPA.
e. Bamboo runs the Deploy IPA to device script. On the build node, you should see

Xcode immediately launch and deploy the Stockfish app to the tethered device.
Do not interact with Xcode while this is happening. Once the app has been
deployed, Xcode will automatically exit.

 28

f. On the tethered device, you should see the Stockfish app briefly appear. It will
immediately switch over to the SOASTA TouchTest Agent web page (in Safari),
with the Status showing "Connected." Note that the tethering requirement
originates with Xcode and is not a requirement of touch testing.

g. Bamboo plays the CloudTest compositions using SCommand. On the tethered
device, you should see the Stockfish app launch and run through the test steps
for each composition you included. When the test finishes, Stockfish will exit, and
the SOASTA TouchTest Agent page will reappear on the device. Finally, the build
results are posted incorporating the JUnitXML output received.

h. Test results are presented by one of two categories: New Failures (these can
include test errors posted in results by sCommand) and Fixed Tests (tests that
failed in one or more prior builds that are fixed in the current build).

 29

Inspecting TouchTest Results in Bamboo
For a successful test with no failures, the Bamboo Test Report Summary page merely
lists the All Tests section with the given package (i.e. in this case the package equates to
a CloudTest repository folder).

In the tests sections (near the bottom), test compositions will be listed if they are new
failures (which doesn't apply in a result marked "successful (shown in green above)", or if
they failed in a prior build and passed in this build (fixed tests).

 30

• Clicking the test composition link (e.g. Composition for Fools Mate Clip) opens the
Test Summary page, which gives greater detail about the performance record of
this item.

 31

Things get more interesting when an error in the test composition occurs. The
subsequent SCommand output is displayed (in text) on the Build Result Summary page
(as discussed above).

In this case, the New Test Failures section is added (under Tests) with the name of the
test composition listed with a link to more of the SCommand details.

Clicking the link under the Test Name section where the composition is named displays
an Error detail page (for the given error).

 32

The Error Log presents the main error message, which is also found in the summary
section on the Result Details dashboard (in the SOASTA UI).

In the error below a new failure, an image validation in the Composition for Fools Mate
has failed.

Refer to Result Details Dashboard for a quick review of Result Details features.

 33

http://cloudlink.soasta.com/t5/Knowledge-Base/Result-Details-Dashboard/ba-p/710
http://cloudlink.soasta.com/t5/Knowledge-Base/Result-Details-Dashboard/ba-p/710

A	

SOASTA, Inc.
444 Castro St.

Mountain View, CA 94041
866.344.8766

http://www.soasta.com

	

http://www.soasta.com
http://www.soasta.com

