SCASTA

TouchTest™ Jenkins Cl for Android Tutorial

SOASTA TouchTest™ Jenkins Cl for Android Tutorial

©2015, SOASTA, Inc. All rights reserved.

The names of actual companies and products mentioned herein may be the
trademarks of their respective companies.

This document is for informational purposes only. SOASTA makes no warranties,

express or implied, as to the information contained within this document.

Table of Contents

ADbOoUt ThiS TUEOTIAL. ...ttt st e sesassasnsans 1
Jenkins/TouchTest PrereqUISites.......... o eeeeeeneeieeeeeeeceeeeeeeeeseeeeseeseeseessesesssssessassesssssaens 2
ANAIOIA @NA ANT oottt bttt 2
Configuring the ANArOid DEVICE. ... seessssssss st s st ssss s sss st sssnees 2
Test COMPOSITION Prer@QUISITES ...t st sssss st sss s ss st sssssans 3
CloudTest Continuous Integration SUPPOIt..........ccoreririrnieneninceeeneesneeneeneeseeseesaseneen 4
Installing the SOASTA CloudTest Jenkins/Hudson Plugin...........ccococoviiinninninnnnnnnncnncnncnnen. 5
Installing the GitHub Plugin ceeseeseeeeseeneesseseessessesessassassens 8
Static vs. Dynamic INStrumentation ... oioinninieininrcccceeeeeeceseeeeesaeenees 10
Jenkins WOrkfloOws fOr TOUCNTEST ...ttt sss st essssnees 10
Dynamic INStrumentation Of AN APK fle ... uuerserrmserssesssssssssssssssssssessssssssssssssssssssssssssssssssssssssessesessssssssees 11

Static InStrumentation 0f an ANATOIA PrOJECT wvoueereeeserssersessssssssosssesssssssssesssssssssessssssssssesesosesesssss st 12
Creating a New Jenkins JODb ... eeecteeeeeeeeeeteeee s seesesasasnees 13
Update the Android Project......... e eeeeeeeeeeeeeceeeeeeeeesessessessessesssssassessessessassessessassassassess 16
Using the CloudTest Jenkins Plugin, MakeAppTouchTestable.............ccccoeivinvinnininnannanncn. 18
Using MATT 0N @n APK (DYN@MIC) ...cuuiuuriieiiieiiieeiseeeeeeisseessesissesssesssse s st ssssssssssss s s sssssssssssssns 19
USiNg MATT 0N @ ProjeCt (STATIC) oottt ssss s s st sssssanes 21
Building the APK File 23
Build the APK File USINg ANt (DYNAMIC) ...vuurviieireeeieriieeiiseesiecsissessseesssseesssesssssssssesssssesssessssesssneces 24
Build the APK File USING ANt (STALIC) ... essessssssessseesssssesssesssssssssssssssssssneees 25

Install the APK File to the Device(s) (All Workflows) 27

Playing the COMPOSItION........ooeieieeeeeeeeeeeeeeececeeeteeeeeseeseesessessessssssssassessessassasssssassassassess 28
Building the Project With JENKINS ... eeeeee e e seeseesesseenens 30
Inspecting Test Results in Jenkins 31
Appendix I: Importing Source Controlled SOASTA XML I

IMPOrting ClOUATESt ODJECLS ...ttt st sttt ses I
Appendix Il: Jenkins Plugin, Transaction Thresholdscccocoviiinnnnnnnnnnninninniiinenne. v

About This Tutorial

This tutorial guides the user through the process of using the Jenkins continuous
integration tool combined with the CloudTest Jenkins/Hudson Plugin in tandem with

an example Android project and preconfigured CloudTest test compositions.
This tutorial provides guidance for two audiences:

e Users who would like to add Android testing using Ant to a pre-existing Jenkins

setup

e Users who are Android Developers starting out with TouchTest who would also

like to add TouchTest to a continuous integration setup

TIP: If your organization is not already using Jenkins—refer to the

documentation on the Use Jenkins page to get started.

In the steps presented in this tutorial a Jenkins job will be defined that can get project
source code, make it or its compiled APK TouchTestable, deploy it, and use the
mobile app to silently play a test composition in CloudTest and on the specified
devices. Finally, CloudTest results are inspected inline in Jenkins, also via the CloudTest

Jenkins/Hudson Plugin.

Note: A version of the Droidfish chess game, an open-source project available
from GitHub, has been customized for use in this tutorial. You can, of

course, substitute your own mobile app’s source.

https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins

Jenkins/TouchTest Prerequisites

This guide presumes that the Android developer has the following configuration:

Android and Ant

e This tutorial uses Apache Ant with Android SDK. Learn more about the Android
SDK here, and Apache Ant here.

o The Minimum Android Version supported for use with TouchTest™ is
2.3.3 (Gingerbread).

o The Minimum Apache Ant version required for using the SOASTA
CloudTest Jenkins Plugin is 1.8.0 or later.

e The Jenkins GitHub Plugin is used to retrieve the project used in this tutorial

(instructions for installing it are presented below). Refer to the git site here.

e The native app example in this tutorial, Droidfish, uses the Android NDK,
although this is not a requirement of TouchTest itself. Unless you have a
different Android native mobile app you'd like to use with this tutorial, install

the Android NDK toolset into your environment before proceeding. The NDK

Library is deployed into the workflow at the appropriate time (either using Ant
or the CloudTest Jenkins Plugin, MATT module).

Configuring the Android Device

Each Android device must have the TouchTest Agent app installed and Connected at
runtime (if mobile web testing will occur then the TouchTest Web app is also

required).

TIP: Refer to the "Installing the TouchTest Agent on a Device (All Users)"

section of the TouchTest Android Tutorial to configure your mobile device

for use within your CloudTest instance.
Each Android device should have the following Settings:

In the device settings, tap Developer Options and check the USB Debugging box.

http://developer.android.com/sdk/index.html
http://ant.apache.org/
http://git-scm.com/downloads
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Android_Tutorial.pdf

In the device settings, tap "Security" and then tap to check the Unknown sources box.

Note: TouchTest Agent must be installed on the device. Instructions to install it

are included below.
Test Composition Prerequisites

The test compositions you will use must already exist on the CloudTest instance that
you specify and you must use the correct SOASTA Repository path to invoke them.

The test composition specifies the device(s) that it will run on.

If you're a new TouchTest user, refer to the following documentation before

proceeding with this tutorial.

e Basic TouchTest recording is covered in the TouchTest™ Android Tutorial.

The test clips shown in the result dashboards at the end of this tutorial were created
using the GitHub version of Droidfish used in this guide simply by following the steps

presented in the following two Advanced Tutorial sections:

» Create a Simple TouchTest Clip — King Gambit Declined
» Advanced Clip Editing — Fool's Mate

Note: Note that the Droidfish app (rather than Stockfish) and alternate names
are used for the test composition in this Android version; Composition for
Droidfish1 and 2, respectively. These apps are based on the same
underlying chess game engine and the clip creation steps are

interchangeable (e.g. between Stockfish and Droidfish).

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Android_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf

CloudTest Continuous Integration Support

SOASTA CloudTest includes first-class support for including test output in build
reports for Jenkins and Hudson via the SCommand utility. Additionally, the
Jenkins/Hudson Plugin provides visual integration with CloudTest dashboards within

Jenkins itself.

CloudTest automatically outputs JUnitXML-compatible test output that is the basis for
test result display in Jenkins. Since Jenkins provides out-of-the-box JUnit support
these result details from a given test composition run in Jenkins will appear on the

corresponding Test Results page in Jenkins.

By placing all its XML into a directory that we also provide to Jenkins as a part of
defining a given job, we can easily display these JUnit-friendly test results inside
Jenkins. Using this configuration, a Jenkins Test Result detail page will display details

from CloudTest.

While it is not necessary to install the CloudTest Jenkins/Hudson Plugin to utilize
CloudTest's JUnitXML-formatted output in Jenkins in this manner, plugin installation
adds the capability to also jump to specific test composition errors in the CloudTest

Result Details dashboard from within Jenkins.

Regression

SOASTATutorial.Android.Composition for Droidfishl (from SOASTATutorial.Android.Composition for Droidfish1)

Q\falldat\on "verifyElementPresent" failed.

Click here to hide the SOASTA CloudTest dashboard

CloudTeStE' |5 Central Y B Compositi_oidfish1 [SOASTA. .|
(= (O =

Result Details Dashboard © +

Result Detalls
S Element Status: [1s 4 | [Al 4| | ElementType: [Is 4| | All 4| | Operation: | s A 8|

Is

¥ B Composition for Droidfish1 n=p JX Completed - With Effors | Total Components: 13 Total Messages and Actions: 8 Error Compenents: 1 E
¥ £ Band 1

o mna]!
ST — L

S0ASTATutorlal » Android » Composition for Droidfish1

General

Error(s): €3 Validation verifyElementPresent failed.

Name: SOASTATutorial/Android/Composition for Droidfish1

Status Effective Duration Avg. Response Time Total Message Bytes
Completed 22 sec. 33 ms. Sent: 0
Received: 0
Start: Mon Now 05 12:38:57 PST 2012 Min: Bms. Agg: 285 ms Max number of threads used :
End: Mon Nov 05 12:37:24 PST 2012 Max: B2 ms

In the screenshot above, the error heading and detail text are an output of
SCommand for the test shown. The hypertext link for the CloudTest dashboard is an
output of the plugin, which has already been clicked to show the CloudTest
dashboard. Once the Jenkins plugin is installed, The Click here... link will appear once

the Post-build action box is checked.

Clicking the link, and providing CloudTest credentials, will then display the precise

failure inline in Jenkins for the given CloudTest result.

Installing the SOASTA CloudTest Jenkins/Hudson Plugin

Use the following steps to install the CloudTest Jenkins Plugin (version 2.9 or later are
required for dynamic instrumentation as well as to automatically update the CloudTest
Jenkins Plugin's MakeAppTouchTestable) from within your Jenkins instance. The MATT

module is auto-updated, so once it's installed the most current version is assured.

1. In Jenkins, click Manage Jenkins, and then click Manage Plugins.

Manage Jenkins

i, New version of Jenkins (1.471) is available for download (changelog).

T &
= Configure System
\y Configure global settings and paths.
|

Reload Configuration from Disk

Discard all the loaded data in memory and reload everything from file system. Useful when you modified config files directhy

Manage Plugins r
Add, remove, disable or enable plugins that can extend the functionality of Jenkins.

Displays various environmental information to assist trouble-shooting.

System Log
System log captures output from java.util.logging output related to Jenkins.

@

&
gww
B

2

Click the Plugin Manager, Advanced tab.

3. Locate the SOASTA CloudTest Plugin in the list (using Cmd+F and "Soasta" is a

quick way to locate it).

Checkstyle Plugin

[l 3.35
This plugin generates the trend report for Checkstyle, an open source static code analysis program.
Clang Scan-Build Plugin
(] 1.4

This plugin allows you to execute Clang scan-build against Mac or iPhone XCode projects.
SOASTA CloudTest Plugin

This plugin integrates SOASTA CloudTest and SOASTA TouchTest features into Jenkins.

Clover Plugin

This plugin allows you to capture code coverage reports from Clover. Hudson will generate and track code coverage across time. 4.0.6
This plugin can be used without the need to modify your build.xml.

Clover PHP Plugin

This plugin allows you to capture code coverage reports from *PHPUnit*. For more information on how to set up PHP projects with 0.3.3
Jenkins have a look at the Template for Jenkins Jobs for PHP Projects.

Cohartiirs Pliain

4. Click the Install without Restart button at the bottom of the page.

The Installing Plugins/Upgrades page appears and indicates success once the install
completes.

Jenkins Update center

Back to Dashb d - -
Back to Dashboard Installing Plugins/Upgrades
& Manage Jenkins
Preparation

'l': Manage Plugins + Checking internet connectivity
o + Checking update center connectivity
+ Success

SOASTA CloudTest Plugin 0 Success

Go back to the top page
(ywou can start using the installed plugins right away)

@- || Restart Jenkins when installation is complete and no jobs are running

Before using the CloudTest Jenkins Plugin, you will need to provide the CloudTest
server URL and user credentials via the Manage Jenkins > Configure System page,

CloudTest section. We recommend creating a dedicated CloudTest account for Jenkins

to use.
CloudTest Servers
Mame My CloudTest Instance
URL http: /152, 168.1. 315 concerto/

User Name sgasTa_DOC
Password

Installing the GitHub Plugin

Use the following steps to install the GitHub Plugin from within your Jenkins instance.
This will allow us to use GitHub as a Source Code Repository to retrieve the example

project, Droidfish.

TIP: Git is a distributed version control system used for software development.
It is not necessary to signup or login to GitHub in order to checkout the
code using the following command. In the Source Code Management

section, click Git.

If you are using your own app, you can skip this requirement and then

substitute the SCM tool and repository to use in the place of Git.

1. In Jenkins, click Manage Jenkins, and then click Manage Plugins.

Manage Jenkins

download (changelog

Configure System
Configure global settings and paths.

Reload Configuration from Disk
Discard all the loaded data in memory and reload everything from file system. Useful when you modified config files directhy

Manage Plugins
Add, remowve, disable or enable plugins that can extend the functionality of Jenkins.

Systemn Information
Displays various environmental information to assist trouble-shooting.

Systemn log
System log captures output from java.util.logging output related to Jenkins.

~ [S

Click the Plugin Manager, Advanced tab

3. Locate the GitHub Plugin and check it as well. Installing the GitHub Plugin will
also install the GitHub Plugin.

You can verify plugin installation on the Manage Plugins, Installed tab:

Updates = Avallable | Installed = Advanced
Enabled Name |
Ant Plugin
Uses OWASP AntlSamy to allow safe-seeming HTML markup to be entered In project descriptions and the like.
AntiSamy Markup Formatter Plugin

&
Uses OWASP AntlSamy to allow safe-seeming HTML markup to be entered In project descriptions and the like.
— Credentials Plugin
L]
This plugin allows you to store credentlals In Jenkins.
& CVS Plug-in
Integrates Jenkins with CV5 verslon control system using a modified version of the Netbeans cvsclient.
@ External Monitor Job Type Plugin
Adds the ability to monitor the result of externally executed jobs.
— GIT client plugin
L]
Shared library plugin for other Git related Jenkins plugins.
& GIT plugin
This plugin Integrates GIT with Jenkins.
— GitHub API Plugin
L]

This plugin provides GltHub API for other plugins.
GitHub plugin

This plugin Integrates GitHub to Jenkins.
Javadoc Plugin

This plugin adds Javadoc support to Jenkins.
LDAP Plugin

Securlty realm based on LDAP authentication.
Maller

This plugin allows you to configure emall notifications. This is a break-out of the original core based emall component.
Matrix Authorization Strategy Plugin

Offers matrix-based security authorization strategles (global and per-project).
Maven Integration plugin

'

®

®

®

®

Note: We will specify a Git repository to clone in a later step in the Jenkins job.

Static vs. Dynamic Instrumentation

The CloudTest Jenkins Plugin's MATT module supports two instrumentation methods:

static and dynamic. The MATT module plays a role in making either the Android

project (static instrumentation) or its compiled APK (dynamic instrumentation)
TouchTestable.

1.

Dynamic instrumentation occurs when MATT instruments a compiled file (i.e.
an APK file).

This method requires that you compile your Android project first to create
an APK, after which it can be instrumented using SOASTA 51.07 or later
(TouchTest 7040.58). Dynamic instrumentation is available for all supported

Android versions.

Static instrumentation occurs when MATT instruments an Android project.
This method requires that you apply MATT to the project prior to building
the APK. Static instrumentation is available in all TouchTest releases and for

all supported Android versions.

Determine whether to instrument the mobile app using the MATT input type

project or APK. The subsequent steps will differ since MATT is applied prior to

compile when using static instrumentation then it is when using dynamic

instrumentation.

To use dynamic instrumentation, follow the steps in Making the Droidfish
APK TouchTestable.

To use static instrumentation, follow the steps in Making the Droidfish

Project TouchTestable.

Jenkins Workflows for TouchTest

The CloudTest Jenkins Plugin is used to make the mobile app TouchTestable—either

by applying it to the project or to the APK file itself (as discussed below). Ant is used
to build the APK and the command used depends whether MATT has already been

10

applied. After which, adb is used in an Execute Shell step, followed by a final pre-build

step that uses the CloudTest Jenkins Plugin, Play Composition(s) command.

Because there are different possible Jenkins job workflows, the possible steps are

presented a /a carte. For each Jenkins job there will be (minimally):
o A First step; used to retrieve the source project (all workflows)
o In between the first and last steps, each Jenkins job will have:
» A CloudTest Plugin, MakeAppTouchTestable step;
» with one (or more) Build step using Ant (in Execute Shell)
» and one (or more) Install steps using adb (in Execute Shell)
o A Last step; to Play the Composition

Note: Signing the app is done using the CloudTest Jenkins Plugin, MATT,
Advanced Options to enter the optional parameters (refer to the relevant

sections).
Note the following terminology:
e Static instrumentation applies MATT to the Android project file

e Dynamic instrumentation applies MATT to the APK file

Dynamic Instrumentation of an APK file

In this workflow, you'll apply MATT to the compiled APK file using the appbundle
parameter. If you're also deploying to physical devices, you'll need to mix and match
steps to do both, keeping in mind to build the APK first.

o Get the source code (in this scenario, using git)

o Build the APK with an Execute Shell step using Ant

o Apply MATT to that compiled APK using MATT's APK input type
o Install the APK

o Run the composition(s)

11

@)

Post results (optional)

In the following sections, choose only those steps that match your workflow.

Static Instrumentation of an Android Project

In this workflow, you'll apply MATT to the Android project itself, using the project
input type. This is done before the APK build step. After which, add the step(s)

necessary to build and install to your simulators and devices.

O

o

Get the source code (in this scenario, using git)
Apply MATT using the project input type (static only)
Build the APK with an Execute Shell step using Ant
Install the APK

Run the composition(s)

Post results (optional)

12

Creating a New Jenkins Job

The Jenkins job created below will have steps that get the source code, ensures a
project update using Execute Shell, uses the CloudTest Jenkins Plugin,
MakeAppTouchTestable module on that project or APK, builds an APK (either before
or after it is made TouchTestable) and installs the APK to a device, after which the
CloudTest Jenkins Plugin's Play Composition(s) command is used to silently play a list
of compositions. Finally, a Post-build action is used to publish the JUnit test result

report.

1. In the top-level Jenkins dashboard, click New Job.

Jenkins

= New Job *" Welcome to Jenkins!
& Pecole

= Build History

s Manage Jenkins

Build Queue

Mo builds in the queue.

Build Executor Status
Status
1 Idle
2 Idle

13

The Job Details page appears.

Item name |projgfishFunctionalTests

* Build a free-style software project

This is the central feature of Jenkins, Jenkins will build your project, combining any SCM with any build syst]
software build.

Build a maven2/3 project
Build a maven 2/3 project. Jenkins takes advantage of your POM files and drastically reduces the configurat]
Build Flow

A Build Flow can manage job orchestration as a dedicated entity, in a centralized way with complex orchest|
handle the upstream-downstream chain.

Build multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on multiple envir
Monitor an external job

This type of job allows you to record the execution of a process run outside Jenkins, even on a remote mac
dashboard of your existing automation system. See the documentation for more details.

Copy existing Item
Copy from

1. Enter a job name that has no spaces (for example, DroidfishFunctionalTests)

and check the first option, "Build a free-style software project”.

The Job Details page appears.

Fraject name |DroldfishFunctional Tests
Description

Checks out the Droiafish scurce code project, instruments a preject or APK, deploys the app, and runs the tests.

[Escaped HTML] Preview
Discard Old Bullds

GitHub project
Tnis bulld [s parameterized

Disable Bulld {No new bullds will be executed untll the project (s re-enabled.)
Execute concurrent bullds If necessary

Advanced Project Options

Source Code Management
[
CV'S Projectset
Git

& Mone

Subversion

2. Enter a description for this job:

e For example, "Checks out the Droidfish source code project, instruments a

project or APK, deploys the app, and runs the tests."

Leave the Job open and continue with the following section.

14

Get Droidfish using the GitHub Plugin (All Workflows)

Next, we will add a step that will get the Droidfish Android project that will be used in

the remainder of this tutorial.

The following instructions use the Jenkins GitHub Plugin (installed above). If you are
using your own Source Code Management system simply select its type and enter its

repository URL, as you would normally do.

With the GitHub Plugin installed in our Jenkins instance, we will add the Source Code

Management step as we would with any SCM tool.

1. In the Source Code Management section, check the Git radio button.

Source Code Management
cvs

@ cit
Repositories Repasitory URL (2] @

@ Please enter Git repository.

Note: You can specify your own SCM tool and Repository URL here.

2. Enter the repository URL in the entry field:
https://github.com/elitecoder/droidfishchess_android

Source Code Management
Cvs

@ ait

Repositories Repasitory URL https://github.com/elitecoder/droidfishchess_android '@' I@I
aaal

3. Click Apply.

Leave the Job open and continue with the following section or click Apply and then

Save to return later.

15

Update the Android Project

Now that we've added Git as our source, let's update the Android project to ensure

that we will be able to build the APK file later using ant.

1. Click Add a Build Step, and select Execute Shell from the drop-down list. Note
that after the step is created you can drag it to the correct place in the

workflow of your Jenkins job.

Add build step -

-

Capture i05 Device Screen Shot
Execute Wingews batch command
Execute shell

Import ClouaTest Objects

Install 105 App on Device

Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

L

2. Next, enter the following lines in the Execute Shell field:
#Update the Android project

~/android-sdks/tools/android update project -p .

The APK file is a requirement for deployment to all Android simulators and devices—
in addition to being required before using the CloudTest Jenkins Plugin's MATT, APK
input type.

Execute shell

Command #Update the Android project
~fandroid-sdks/toolsSandroid update project -p .

See the list of available environment variables

3. Click Apply.

Leave the Job open and continue with the following section or click Apply and then

Save to return later.

16

17

Using the CloudTest Jenkins Plugin, MakeAppTouchTestable

As noted in the prerequisites above, the CloudTest Jenkins Plugin,
MakeAppTouchTestable module is used to automate portions of making the app

TouchTestable.

Note: The CloudTest user specified to run the CloudTest Jenkins Plugin,
MakeAppTouchTestable module must be a user with Mobile Device
Administrator rights. CloudTest Lite users have admin rights for the given

device on their own instance.

18

Using MATT on an APK (Dynamic)

Use the following steps to dynamically instrument an APK file at the proper point in

your workflow.

e If you are using dynamic instrumentation, you must first do the APK step prior
to this step. But, if you'd rather follow along sequentially, you can add the
MATT step now so long as you place an APK build step prior to it before
building the Jenkins job.

e If you are using static instrumentation, you must apply MATT to the project

prior to this step.

1. Add a MakeAppTouchTestable step to the job.

Build pericdically
Poll SCM

Build

Add build step =

Capture [0S Device Screen Shot
Execute Windows batch command
Execute shell

Import CloudTest Objects

Install 105 App on Device
Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

Play Composition

Reboot 105 Device Page generaf]
Rum App in 105 Simulater
Wake up 105 Device

Save Apoly

icanfinured

2. Select the Input Type, APK (e.g. the MATT equivalent is the APK parameter).

Make App TouchTestable
CloudTest Server(My CloudTest Instance

Input Type [(APK

Input File droidfishchess_androig/ Droidfish-Debug.apk

3. Enter the APK name as the Input File (from the workspace root).

19

Make App TouchTestable

CloudTest Server ((My CloudTest Instance
Input Type [aprK
Input File droldfishchess_androld/Droidfish-Debug.apk

Launch URL (optional)
Target (105 only)
Back up medified files
Additional Opticns

Java Options

Click Advanced to display additional MATT configuration fields. Enter the
androidsdk flag here and the path to the Android SDK in use. This is required
when instrumenting an APK file. For example, -androidsdk

~/Development/android-sdk-macosx
Specify other MATT flags as required.

For example, use either overwriteapp Or donotcreateapp to control mobile app
object creation. In some cases, this step can prevent Jenkins from marking the
MATT step with FATLURE status (even though the Mobile App object on the

CloudTest instance is created as expected).

Refer to Additional Options below for other essential flags to use here, including

those related to signing the APK file.

Make App TouchTestable

CloudTest Server (My CloudTest Instance
Input Type (&P
Input File bin/DroldF Ish-debug.apk

Launch URL (optional)

Target (105 only)

Back up modified files

Additional Optians -andreldsdk /Users/igardner/ android-sdks -gdonotoreateann

Java Options

e Launch URL - Same as MATT launchurl. For example: my-app://launch

e Backup modified files — Check this to keep backups in the project.

20

e Additional options - Enter any additional MATT command line parameters.

Most notably, you can use MATT to add keystore, keypass, and storepass

arguments to sign the dynamically instrumented APK file.
Use the following MATT optional APK parameters
e -keystore <keystorepath> - Path of the keystore to be used to sign the APK file..

e -storepass <keystorepassword> - Password of the keystore to be used to sign
the APK file.

e -keypass <privatekeypassword> - Password of the private key (if different

than the keystore password) to be used to sign the APK file.
For more about using additional MATT parameters, use:
sh MakeAppTouchTestable/bin/MakeAppTouchTestable - help
6. Save the Jenkins job.
Using MATT on a Project (Static)

Use the following steps if you'll be instrumenting the project using the static method
via the Input Type, project. This step will always proceed the build APK step while

using static instrumentation.

1. Click Add a Build Step, and select Make App TouchTestable from the drop-

down list.

Build pericdically
Poll SCM

Build

Add build step -

Capture [0S Device Screen Shot
Execute Windows batch command
Execute shell

Import ClowdTest Objects

Install i0S App on Device

Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

Play Compesition

Reboot (0S Device Page generaf]
Run App in 105 Simulator
Wake up 105 Device

Save Apoly

iennfinnred

21

The Make App TouchTestable form appears.

TIP: Click the Help icons for any row to get tip text.

Build

Make App TouchTestable
CloudTest Server| My CloudTest Instance

Input Type [Project

Input File
@ Input file is required.

2. Select the CloudTest Server from among those configured.

Note: Indicating the CloudTest server was done as part of the CloudTest Jenkins
Plugin, Configure System step. If not entries appear here return to Manage
Jenkins > Configure System, and fill in the information in the CloudTest

Servers section. Be sure to save these changes.

3. Specify the current project folder to use. "droidfishchess_android" to indicate

the project folder in the Jenkins workspace.

Make App TouchTestable

CloudTest Server (My CloudTest Instance
Input Type [Project
Input File droldfishchess_androld

4. Optionally, specify additional parameters by first clicking the Advanced button
(page right).

Build

Make App TouchTestable

CloudTest Server (My CloudTest Instance
Input Type [Project
Input File droidfishchess_androld

Launch URL (optional)
Target (10S enly)
Back up modified files
Additional Options
Java Optlons

5. Select the CloudTest Server from among those configured.

22

TIP: Indicating the CloudTest server was done as part of the CloudTest Jenkins
Plugin, Configure System step. If not entries appear here return to Manage
Jenkins > Configure System, and fill in the information in the CloudTest

Servers section. Be sure to save these changes.
6. Optionally, click Advanced to display additional MATT configuration fields.

e Launch URL - Same as MATT launchurl. For example: my-app://launch

e Back up modified files — Check this to keep backups in the project folder

(where build.xml resides).
e Additional options - Enter any additional MATT command line parameters.

Most notably, you can use MATT to add keystore, keypass, and storepass

arguments to sign the dynamically instrumented APK file.
Use the following MATT optional APK parameters
e -keystore <keystorepath> - Path of the keystore to be used to sign the APK file..

e -storepass <keystorepassword> - Password of the keystore to be used to sign
the APK file.

e -keypass <privatekeypassword> - Password of the private key (if different

than the keystore password) to be used to sign the APK file.

For more about using additional MATT parameters, use:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable - help

7. Click Apply and then Save.

Building the APK File

The APK file is a requirement for deployment to all Android simulators and devices

and will be placed in the Jenkins workspace at "bin/Droidfish-Debug.apk."

23

Add this build step at the point in your workflow required by the instrumentation type

that you chose—dynamic or static.

Note: The Ant commands used to build the APK differ slightly and are not

interchangeable.

e If you are using dynamic instrumentation, build the APK prior to using MATT to

instrument it.

e If you are using static instrumentation, apply MATT to the project prior to
building the APK. While using the static build step, you will also use the -

Dtouchtest.enabled=true debug then you DONT use this parameter.

Note: As noted in the prerequisites above, the Minimum Apache Ant version

required for using the SOASTA CloudTest Jenkins Plugin is 1.8.0 or later.
Build the APK File using Ant (Dynamic)

Use these instructions to build an APK file that has not yet been made TouchTestable
using the Input Type, APK. This step will always be followed by a step that uses the
CloudTest Jenkins Plugin, MATT module, APK input type. Refer to "Using MATT on an

APK (Dynamic Instrumentation for Device)" above for instructions.
In this example, ant is presumed to be in the path (supply the additional path if not).

Note: As noted in the prerequisites above, the Minimum Apache Ant version

required for using the SOASTA CloudTest Jenkins Plugin is 1.8.0 or later.

The APK file is a requirement for deployment to all Android simulators and devices

and will be placed in the Jenkins workspace /bin as Droidfish-Debug.apk

1. Next, enter the following lines in the end of the Execute Shell field:
#Build the APK file using Ant

ant -Dndk.dir=/Users/username/android-sdks/android-ndk-r8b clean debug

24

Execute shell

Command [#puild the APE file incorporating KDK
ant -Dndk.dir=/Users/jgardner/android-sdks/android-ndk-rib clean debug

See the list of availzable envircnmeant variables

where:

e -Dndkdir=/Users/username/android-sdks/android-ndk-r8b - Adds the NDK Library

required by Droidfish. This is not a TouchTest requirement.

e For this example, we must build with the debug parameter because this
project includes no key store. We are building a debug version of the

Droidfish app here that doesn't require APK signing.

Refer to Signing Your Applications on the Android Developer site if you

will not be using MATT to sign your mobile app. Otherwise, use the

available MATT flags to sign the app.
Build the APK File using Ant (Static)

Use this build step version to build an APK file that has not already made
TouchTestable using the CloudTest Jenkins Plugin, MATT module, Input Type, project.
1. Next, enter the following lines in the end of the Execute Shell field:
#Build the static APK file using Ant

ant -Dtouchtest.enabled=true debug -Dndk.dir=/Users/username/android-sdks/android-ndk-r8b
clean debug

Execute shell

Command srnztall the APK file to the device(s)
~fandroid-sdks/platform-tocls/fadk install -r -/Shared/Jenkins/Home/jobs/DroidfishFuncticnalTests/bin/DroidFish-debug TouchTest.apk

See the list of available environmeant variablas

where:

25

http://developer.android.com/tools/publishing/app-signing.html

-Dndk.dir=/Users/username/android-sdks/android-ndk-r8b - Adds the NDK Library

required by Droidfish. This is not a TouchTest requirement.

-Dtouchtest.enabled=true - This flag tells the build process to perform

TouchTest enabling steps as part of the build.

For this example, we must build with the debug parameter because this
project includes no key store. We are building a debug version of the

Droidfish app here that doesn't require APK signing.

Refer to Signing Your Applications on the Android Developer site for

more about signing applications. In most cases, you'll use the MATT
module's Additional Options entry field to enter MATT flags, including

signing.

26

http://developer.android.com/tools/publishing/app-signing.html

Install the APK File to the Device(s) (All Workflows)

Now that the APK file exists we can easily deploy it to all of the tethered devices (or
running emulators), without specifying the device ID by using the adb command,
using adb. Use the Jenkins $WORKSPACE variable to indicate the path, if desired.

1. Create an Execute Shell step in the Jenkins job.
2. Enter the following adb install using your own file paths:

#Install the APK file to the device(s)

~/android-sdks/platform-tools/adb install -r
~/Shared/Jenkins/Home/jobs/DroidfishFunctionalTests/bin/DroidFish-debug_TouchTest.apk

Deleta
Execute shell (7]
Command |#rnstall the APK file to the dewice(s)
~fandroid-sdis/platform-toclsfadb install -r
~/Shared/Jenkins /Homesjobs /DroidfishFuncticnalTests/bin/DroidFish-debug TouchTest.apk
A
See the list of availzble envirenment variables
where:

e -r forces an overwrite if the mobile app already exists on a device

27

Playing the Composition
Finally, we will add a build step using the Play Composition command.

1. Add a build step and select Play Composition from the drop down.

Add build step

Execute shell

Import CloudTest Objects
Install OS5 App cn Device
Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

Play Compaosition

Reboot 105 Device

-

TIP: If you are adding more than one composition, click the down arrow in the
Play Composition field to expand the entry field before entering the first

composition path.

Play Composition
Composition(s)

2. Enter each composition to play using its full SOASTA Repository path (shown

below). For example,

/SOASTA Tutorial/Advanced Composition/Composition for Droidfishl
/SOASTA Tutorial/Advanced Composition/Composition for Droidfish?2

28

Play Composition

Composition(s) [,5oaSTA Tutorial/Advanced/Composition for Droidfishi
JSOASTA Tutorial/Advanced/Compasition for Droidfishe

Note: Ensure that you have dragged all the steps into the right order before
building. The order should be the same as in this tutorial, but may vary

slightly depending on whether you're using devices, simulators, or both.

3. Click Save to complete the Jenkins job.

29

Building the Project with Jenkins

After you click the Save button, you will be taken to the project page for the job you

just created.

1. To build the project, click the "Build Now" link.

Jenkins
Y

Jenkins Stockfish Functional Tests
4% Back to Dashboard

! ,'\\ Status

:_, Changes

o Workspace

3_2) Build Now =

@ Delete Project

7 Configure

The build will start. After a short delay, you should see a progress bar appear on the
left side of the page. Click this progress bar to watch the build process "live" in the

Console view.
You should see the following happen:

a. Jenkins checks out the source code from Git, and runs the CloudTest Jenkins

Plugin, MakeAppTouchTestable module.

b. Jenkins performs whatever Execute Shell steps you've placed to build the APK

file.

c. Jenkins plays the CloudTest compositions using the CloudTest Jenkins Plugin,
Play Composition(s) command. This module utilizes the CloudTest Command

Line Utility (SCommand), which is automated by the plugin.

d. On the tethered device, you should see the Droidfish app launch and run
through the test steps. When the test finishes, Droidfish will exit, and the
SOASTA TouchTest Agent page will re-open.

30

Inspecting Test Results in Jenkins

For a successful test with no failures, the Test Result page merely lists the All Tests

section with the given package (i.e. in this case the package equates to a CloudTest

repository folder).

Jenkins All JenkinsFunctionalTests #164 Test Results

* Back to Project Test Resu‘t

Ol status
- 0 failures i—li

=+ Changes

H Console Output

== Edit Build Information

g History All Tests
Iﬂ Test Result Package
SOASTATutorial

* Previous Build

e Clicking the Package link opens the subsequent CloudTest folder.

Jenkins All JenkinsFunctionalTests #164 Test Results SOASTATutorial
Back to Project -

* Test Result : SOASTATutorial
O* Status

o 0 failures (-1

= Changes

a Console Qutput

....;, Edit Build Information

; History All Tests

D Test Result Class

~¢ Previous Build Android

31

Things get more interesting when an error in the test occurs. The subsequent
SCommand output is displayed (in text) on the Jenkins Test Result page (as discussed

above).

Test Results
Test Result
1 failures i+1i

All Failed Tests

Test Name
=== SOASTATutorial.Android.Compaosition for Droidfishl

All Tests

Package
SOASTATutorial

In this case, the All Failed Tests section is added with the name of the test listed with
a link to more of the SCommand details. Clicking the link under the Test Name
section where the composition is named displays an Error detail page (for the given

error).

#1863 Test Results SOASTATutorial Android Composition for Droidfishl

Regression

SDASTATutorial.Android.Composition for Droidfishl (from SOASTATutorial.Android.Compaosition for Droidfishl)

€3 validation “verifyElementPresent” failed.

Click here to see the SOASTA CloudTest dashboard for this test

Error Message

Composition completed. Validation verifyElementPresent failed. (Band "Band 1" Track "Track 1" Clip "Clip for Droidfish-1 copy")

In the error above a validation in the Composition for Droidfish1 has failed.

32

1. To view this error in the CloudTest, Result Details dashboard, click the plugin
link provided (i.e. "Click here to see the SOASTA CloudTest dashboard for this

test."

After the plugin link is clicked, enter CloudTest credentials whenever required.

Failed

Soasta.tutorial.advanced.Composition for Fool's Mate Clip (from Soasta.tutorial.advanced.Composition for Fool's Mate Clip)

Q\"'N’dﬁ on *verifyElementText” failed. Expected: "Click here", validation parse eric

Click here to hide the SOASTA CloudTest dashboard

SCASTA -
TouchTlest”

SOASTA_DOC

Remember my User Name

o After credentials are entered, the dashboard tab opens, displays the test result,

and jumps to the relevant error.

33

Regression

SOASTATutorial.Android.Composition for Droidfish1 (from SOASTATutorial.Android.Compaosition for Droidfish1)
Failing for the past

@ Walidation "verifyElementPresent" failed.

Click here to hide the SOASTA CloudTest dashboard

CloudTest” FEEwMeEmemmmgl commencosaooc) A
@ / [Edt ' %% Debug |) Py

Resutt Details Dashboard | +

Result Detalls
N[Element Status: [Is * | [All :| | ElementType: [1s : | [a1l :| | Operation: [1s : | [Al :
" ’ —
7 B Composition for Droidfisht [[E]) X Completed - With Errors Total Components: 13 Total Messages and Actions: 8 Error Components: 1 Error Messages and Actions: 1
¥ £ Band 1
b W Track 1

SOASTATutorial » Android » Composition for Droidfish1

General

Error(s): Q Validation verifyElementPresent failed

Name: SOASTATutorial/Android/Composition for Droidfish1

Status Effective Duration Avg. Response Time Total Message Bytes Effective Message 1
Completed 22 sec. 33 ms. Sent: 0 0 msgs/sec.
Received: 0
Start: Mon Nov 05 12:36:57 PST 2012 Min: 8 ms. Agg: 265 ms. Max number of threads used : 2 O bytes/s
End: Mon Nov 05 12:37:24 PST 2012 Mas: B2 ms 0 bitsis

From here, the Result Details dashboard can be navigated as within any CloudTest

dashboard. Refer to Result Details Dashboard for a quick review of Result Details

features.
[Element Status: [1s 3 | [Al :] | ElementType: (1s : | (AN | | Operation:[1s 3 | [A 3|
¥ B Composition for Droidfish1 X Completed - With Errors Total Components: 13 Total Messages and Actions: 8 Error Components:
V¥ i Band1
¥ W Track 1 Aﬂﬂ_
¥ (& ciip for DroidFish-1 copy =
#) Scasta Demo Nexus DroidFish ‘—&",-\
MpAcﬂmT
gApthioHZ Band1 » Track1 » Clip for DroidFish-1 copy » App Action|
g App Actiond Pl

il App Actiond
°°

g App Actiond

B App Actions General
B3 Aop Action? Error(s): €3 Validation verifyElementPresent failed
B3 App Actions
Operation: tap Name: App Action1
Start Time Response Time CPU Usage Memory Usage Battery Status
8.389 sec. 35 ms. No Data No Data No Data
Waits And Validations [z5] Custom Properties

| verifyFlementPresent: Failed
—

" ar Kl

34

http://cloudlink.soasta.com/t5/Knowledge-Base/Result-Details-Dashboard/ba-p/710

Appendix I: Importing Source Controlled SOASTA XML

The SOASTA CloudTest Jenkins Plugin includes the ability to import SOASTA objects
such as test clips from exported XML. This technique is useful in test environments

where more than one tester is working as part of a team.

For example, a team might have access to the following:

e 1 CloudTest Pro environment being used for CI, with Jenkins pointed at it.
e 1 version control system.
e 3 CloudTest Lite users, working on their own tests, do the following:
o The CloudTest Lite users export their compositions and clips using the non-
zipped XML, and check them into SVN, on a regular basis.

o The Jenkins job checks them out from SVN, imports the XML into the
CloudTest Pro environment, and then runs the compositions on that same
environment. The exported objects can include dependent objects but the
export should be in XML format and not zipped. Refer to Export and Import
SOASTA Obijects for steps.

Importing CloudTest Objects

1. Export the object(s) to import and check them into the repository that also has

the Xcode project.

2. Add a build step using Import CloudTest Objects. Note that after the step is

created you can drag it to the correct place in the workflow of your Jenkins job.

Add build step +

rs

Capture [0S Device Screen Shot
Execute Windows batch command
Execute shell

Import ClowdTest Objects

Install 105 App on Device

Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

L d

The Import CloudTest Objects form appears. If you will be exporting more than one

XML file click the down arrow to expand the form before proceeding.

http://cloudlink.soasta.com/t5/Knowledge-Base/Export-and-Import-SOASTA-Objects/ba-p/15365
http://cloudlink.soasta.com/t5/Knowledge-Base/Export-and-Import-SOASTA-Objects/ba-p/15365

Import CloudTest Objects

File(s) to import

Conflict resolution mode | papjace the existing objectis)

1. Specify the file name of each XML file to import (one per line).

Import CloudTest Objects

File(s) to import foolsmate.xml

kinggambit.xml

Conflict resolution mode Replace the existing ohject(s)

TIP: You can also use wildcards here. For example, if the CloudTest objects

were checked into a "testobjects" folder, then entering
testobjects/*.xml here would import them all.

2. For this scenario, accept the default conflict resolution mode, which is "Replace

the existing object(s)."

3. Drag the build step into the correct position. In general, before any Play

Composition steps.

4. Click Apply on the Job page.

Appendix lI: Jenkins Plugin, Transaction Thresholds

The Transaction Threshold command—which was made available in the SOASTA
CloudTest Plugin, version 2.17—provides users with the ability to automate the
validation of Transactions in a composition using CloudTest metrics, such as Average

Response Time or Errors per Transaction.

For more details, please visit Setting Transaction Thresholds in Jenkins.

http://cloudlink.soasta.com/t5/CloudTest-Knowledge-Base/Setting-Transaction-Thresholds-in-Jenkins/ta-p/44611

SOASTA, Inc.

444 Castro St.
Mountain View, CA 94041

866.344.8766

http://www.soasta.com

http://www.soasta.com/

