

TouchTest™ Jenkins CI for iOS Tutorial

SOASTA TouchTest™ Jenkins CI for iOS Tutorial

©2015, SOASTA, Inc. All rights reserved.

The names of actual companies and products mentioned herein may be the

trademarks of their respective companies.

This document is for informational purposes only. SOASTA makes no warranties,

express or implied, as to the information contained within this document.

 i

Table of Contents

Prerequisites .. 1

CloudTest Utilities and Plugins... 2

TouchTest Utilities and Plugins .. 2

Prerequisites for Deploying to a Mac using Xcode ... 3

Test Composition Prerequisites ... 4

About Shell Steps and the Signing/Provisioning Prerequisite .. 6

CloudTest Continuous Integration Support ... 7

Installing the SOASTA CloudTest Jenkins/Hudson Plugin .. 8

Configuring the SOASTA CloudTest Jenkins/Hudson Plugin .. 10

Installing the Git Plugin .. 11

Creating a Jenkins Job .. 13

Jenkins Workflows for TouchTest ... 16

Static Instrumentation of an Xcode Project .. 17

Dynamic Instrumentation of an APP file .. 17

Dynamic Instrumentation of an IPA file ... 17

Get Stockfish using the Git Plugin ... 18

Using CloudTest Plugin, MakeAppTouchTestable ... 19

Using MATT on an APP (Dynamic Instrumentation for Simulator) .. 19

Using MATT on an IPA (Dynamic Instrumentation for Device) ... 20

 ii

Using MATT on a Project (Static Instrumentation for Simulators/Devices) 22

Build an APP or IPA using Execute Shell .. 24

Using the Jenkins $WORKSPACE Variable .. 24

Build the APP for Simulator (or Before Building an IPA) .. 24

Build the IPA for a Device (Static or Dynamic) ... 26

Install to a Simulator or Device ... 29

Run the App File on a Simulator ... 29

Install the IPA on a Device (Static or Dynamic) .. 30

TouchTest Agent for iOS 9+.. 32

Get the TouchTest Agent IPA by Running MakeAppTouchTestable Utility 32

Get the TouchTest Agent Project from Resources Page .. 33

Playing the Composition... 34

Building the Project ... 35

Inspecting Test Results in Jenkins .. 37

Appendix I: Waking Up an iOS Device .. 41

Appendix II: Rebooting an iOS Device .. 43

Appendix III: Importing Source Controlled SOASTA XML ... 45

Importing CloudTest Objects .. 45

Appendix IV: Jenkins Plugin, Transaction Thresholds .. 47

 1

Prerequisites

This tutorial guides the user through the process of using the Jenkins continuous

integration tool combined with the CloudTest Jenkins/Hudson Plugin in tandem with

an example Xcode project and preconfigured CloudTest test compositions.

This tutorial provides guidance for two audiences:

 Users who would like to add iOS Testing using Xcode to a pre-existing Jenkins

setup

 Users who are iOS Developers starting out with TouchTest who would also like

to add TouchTest to a continuous integration setup

TIP: If your organization is not already using Jenkins—refer to the

documentation on the Use Jenkins page to get started. Additional Jenkins

installation references are included at the end of this guide.

A Jenkins job will be defined that uses git to retrieve an Xcode project, then uses the

MakeAppTouchTestable utility to make that Xcode project touchtestable, and which

then deploys either an IPA to a device or the built APP to a simulator or device(s)

using a deployment step; after which several pre-existing test compositions are called

using sCommand to run silently in CloudTest and on the specified devices. Finally,

CloudTest results are inspected inline in Jenkins, also via the CloudTest

Jenkins/Hudson Plugin.

Note: A version of the Stockfish chess game, an open-source project available

from GitHub, has been customized to include the Xcode project that is

used as the example project. You can, of course, substitute your own

mobile app’s source and Xcode project for this example.

https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins

 2

CloudTest Utilities and Plugins

Before proceeding, download the following CloudTest plugin and utility software from

the CloudTest Resources page, Downloads section.

 CloudTest Jenkins/Hudson Plugin (this Jenkins/Hudson plugin will be installed

using the Jenkins plugin interface). Jenkins CloudTest Plugin version 2.9 or later

and TouchTest 51.07 or later are required for dynamic instrumentation.

 CloudTest Command Line Client (also known as sCommand, this command

line interface utility will be called at the appropriate time via a Jenkins job using

the CloudTest Jenkins Plugin's MakeAppTouchTestable, Play Composition(s)

build step). Users may opt to do some tasks via the Plugin while others are

accomplished via the sCommand utility. In either case, you should install the

utility.

TouchTest Utilities and Plugins

Next, download the following TouchTest software from the TouchTest Resources

page, Downloads section.

 MakeAppTouchTestable Utility (this utility will be called at the appropriate

time via a Jenkins job using an Execute Shell build step)

 3

Note: The CloudTest user specified to run the MakeAppTouchTestable utility

must be a user with Mobile Device Administrator rights.

 For iOS only, the CloudTest iOS App Installer Utility is required (this utility

contains two executable files; the ios_app_installer, which is used to install

IPA files to iOS physical devices; and the ios_sim_launcher, which is used to

install compiled APP bundle files). This archive contains two executable files:

o For deployment to Simulators, use the ios_sim_launcher executable

found in the iOS App Installer Utility at the appropriate time(s) via a

Jenkins job using an Execute Shell build step.

o For deployment to iPhone and iPad devices, use the iOS App Installer

Utility to deploy .ipa archives to the physical device(s). This executable

can be called at the appropriate time(s) via a Jenkins job using an

Execute Shell build step.

The appropriate executable will be called at the appropriate time(s) via a

Jenkins job using an Execute Shell build step.

Prerequisites for Deploying to a Mac using Xcode

One of the key steps during an iOS automated build is deploying the app to your test

device, without requiring any human interaction. Typical solutions (e.g. over-the-air

distribution) require that the user accept a prompt. SOASTA’s iOS App Installer Utility

includes two tools that silently deploy either an IPA file or an App file.

You will need the following:

 4

1. A dedicated machine running Mac OS X, with Xcode 4.2 or later. If you are

using Jenkins or Hudson, this can be either the master node or a slave.

2. One or more tethered devices. If you have more devices than USB inputs, you

can use a USB hub. Note also that sufficient power to prevent the device from

running down unexpectedly should be available via that USB input. Simulators

can also be used.

A note on tethering: SOASTA TouchTest™ does not require tethering for

recording or playback. However, you do need to tether the device for silent

deployment of your app.

3. The physical iOS device(s) should have the iOS "Auto-Lock" setting set to

"Never" and passcodes should not be in use on any device.

Test Composition Prerequisites

The test compositions you will use must already exist on the CloudTest instance that

you specify and you must use the correct SOASTA Repository path to invoke them.

The test composition specifies the device(s) that it will run on.

This tutorial will call two such test compositions. All steps are performed from the

same Jenkins job that will use either Static Instrumentation or Dynamic

Instrumentation.

For Static Instrumentation the Jenkins workflow is

 Retrieve the project source code using Git (or another SCM tool)

 Make the app touchtestable

 Build the app (or app and ipa) for the specified devices/simulators using an

Execute Shell step

 Deploy the app/ipa on the specified devices/simulators

 Silently play the specified compositions

For Dynamic Instrumentation the Jenkins workflow is

 5

 Retrieve the project source code using Git (or another SCM tool)

 Build the app (or app and ipa) for the specified devices/simulators using an

Execute Shell step

 Make the APP file touchtestable or generate the IPA from the APP and then

make the IPA touchtestable

 Deploy the app/ipa on the specified devices/simulators

 Silently play the specified compositions

If you’re a new TouchTest user, refer to the following documentation before

proceeding with this tutorial.

 Basic TouchTest recording is covered in the TouchTest iOS Tutorial. Jenkins

users should note the advantages of static vs. dynamic instrumentation with

their own development environment in mind.

TIP: Determining whether to use dynamic instrumentation of a project file, or

dynamic instrumentation of an APP or IPA file, before creating the Jenkins

job will save a lot of trial and.

 The Simulator(s) or Device(s) you intend to use must be registered with your

CloudTest instance. Refer to the "Registering Your Device to Use TouchTest™"

section of the TouchTest iOS Tutorial for steps.

 Advanced TouchTest recording, including the use of validations and other

accessors in the open source Stockfish mobile app, are covered in the

TouchTest Advanced Tutorial.

TIP: The test clips shown in the result dashboards at the end of this were

created using the GitHub version of Stockfish used in this guide simply by

following the steps presented in the following two TouchTest Advanced

Tutorial sections:

 Create a Simple TouchTest Clip – King Gambit Declined

 Advanced Clip Editing – Fool’s Mate

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf

 6

About Shell Steps and the Signing/Provisioning Prerequisite

In general, the best practice for all shell steps presented in this tutorial is to first

execute all of them from the command line.

With respect to signing and provisioning, you must perform the following one-time

procedure from Terminal to sign each profile/application combination that is in its first

use. Provisioning will not be silent until this is done.

TIP: If signing is not done, then a "User interaction not allowed" error will

occur in the build. This is because the Operating System requires a user to

sign an application using a specific Provisioning profile for the first time.

In that case, the Operating System needs a user to authorize the signing

process.

Use the following steps:

1. In Terminal, run the xcrun command from your Jenkins job manually.

Note: If you are using the Jenkins $WORKSPACE variable, you'll need to change

it to a Mac OS X path to work here.

For example: "/Users/username/.jenkins/jobs/Stockfish Functional

Tests/workspace"

When you do that, OS will popup a dialog box asking permission for the

signing process.

2. Choose "Always allow" and this error will not show up again.

 7

CloudTest Continuous Integration Support

SOASTA CloudTest includes first-class support for including test output in build

reports for Jenkins and Hudson via the CloudTest Command-Line Client (a.k.a. the

SCommand utility). Additionally, the CloudTest Jenkins/Hudson Plugin provides visual

integration of CloudTest dashboards within Jenkins itself.

CloudTest outputs JUnitXML-compatible test output that is the basis for test result

display in Jenkins. Since Jenkins provides out-of-the-box JUnit support these result

details from a given test composition run in Jenkins will appear on the corresponding

Test Results page in Jenkins.

By placing all its XML into a directory that is also provided to Jenkins, we can easily

display these JUnit-friendly test results inside Jenkins. Using this configuration, a

Jenkins Test Result detail page will display details from CloudTest.

While it is not necessary to install the CloudTest Jenkins/Hudson Plugin to utilize

CloudTest’s JUnitXML-formatted output in Jenkins in this manner, plugin installation

adds the capability to also jump to specific test composition errors in the CloudTest

Result Details dashboard from within Jenkins.

 8

In the screenshot above, the error heading and detail text are an output of the

CloudTest Jenkins Plugin, Play Composition(s) command for the test shown. The

hypertext link for the CloudTest dashboard is an output of the plugin, which has

already been clicked to show the CloudTest dashboard. Once the Jenkins plugin is

installed, The Click here… link will appear once the Post-build action box is checked.

Clicking the link, and providing CloudTest credentials, will then display the precise

failure inline in Jenkins for the given CloudTest result.

Installing the SOASTA CloudTest Jenkins/Hudson Plugin

Use the following steps to install the CloudTest Plugin from within your Jenkins

instance. You must perform this installation to succeed using this tutorial.

1. In Jenkins, click Manage Jenkins, and then click Manage Plugins.

 9

2. Click the Plugin Manager, Available tab.

3. Locate the SOASTA CloudTest Plugin in the list (using Cmd+F and "SOASTA" is

a quick way to locate it).

4. Click the Install without Restart button at the bottom of the page.

The Installing Plugins/Upgrades page appears and indicates success once the install

completes.

 10

Configuring the SOASTA CloudTest Jenkins/Hudson Plugin

Before using the plug-in, you will need to provide the CloudTest server information, in

the Manage Jenkins > Configure System page.

1. Enter the CloudTest URL and the matching credentials. SOASTA recommends

creating a dedicated CloudTest account for Jenkins to use.

2. Save the Configure System page before exiting.

 11

Installing the Git Plugin

Use the following steps to install the Git Plugin from within your Jenkins instance. This

will allow us to use Git as a Source Code Repository to retrieve the example project,

Stockfish.

TIP: Git is a distributed version control system used for software development.

It is not necessary to signup or login to GitHub in order to checkout the

code using the following command. In the Source Code Management

section, click Git.

 If you are using your own app, you can skip this requirement and then

substitute the SCM tool and repository to use in the place of Git.

1. In Jenkins, click Manage Jenkins, and then click Manage Plugins.

2. Click the Plugin Manager, Available tab

3. Locate the Git Plugin and check it as well.

 12

You can verify plugin installation on the Manage Plugins, Installed tab:

Note: Some users may encounter a "Failed to connect to repository" error when

using the Jenkins Git Plugin. If this occurs, set the plugin's path (i.e.

/usr/local/git/bin/git or wherever the executable is located) to your git

executable in the Manage Jenkins > Configure System > Git > Git

Installations > Installation directory field.

Alternately, you can use an Execute Shell step in place of installing the

plugin that will call the git command; however, this also requires the

correct path to the executable. The script in the step would be:

#Download Stockfish from GitHub

/usr/local/git/bin/git clone

https://github.com/elitecoder/stockfishchess-ios

 13

Creating a Jenkins Job

The Jenkins job created below will run on the Mac machine with Xcode and one or

more properly provisioned USB-attached devices. The job will have build steps that

the CloudTest Jenkins Plug-in Command to download a project from source, run the

MakeAppTouchTestable utility on that project, build and deploy using the deploy

script, and call SCommand to silently play a list of compositions.

TIP: Your Jenkins workflow will differ based on the MATT instrumentation

methods you have decided to use. You can review them a second time in

the TouchTest iOS Tutorial

1. In top level Jenkins dashboard, click New Job.

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf

 14

The Job name page appears.

1. Enter a job name and check the first option, "Build a free-style software

project".

 15

The Job Details page appears.

2. Enter a description for this job:

 For example, "Checks out the Stockfish source code with Xcode project, deploys

the app, and runs a suite of CloudTest compositions."

Leave the Job open and continue with the following section.

 16

Jenkins Workflows for TouchTest

The CloudTest Jenkins Plugin is used to do all tasks in the Jenkins job, with the

exception of Build tasks, which are performed using xcodebuild and xcrun.

Because there are different possible Jenkins job workflows, the possible steps are

presented a la carte. For each Jenkins job there will be (minimally):

o A First step; used to retrieve the source project (all workflows)

o In between the first and last steps, each Jenkins job will have:

 A CloudTest Plugin, MakeAppTouchTestable step;

 with one or more Build steps,

 and one or more Install/Run steps

o A Last step; to Play the Composition

Note: Provisioning and codesigning can be performed either using the

CloudTest Jenkins Plugin, MATT's Advanced steps to enter the APP/IPA

optional parameters (refer to the relevant sections). Or, these steps can be

done using xcrun.

 There is a one-time provisioning profile step that should be run prior

to running the complete Jenkins job.

As discussed in the TouchTest iOS Tutorial,

 Static instrumentation applies MATT to the Xcode project file

 Dynamic instrumentation applies MATT to the APP or IPA

In general, you will delay the MATT step only until the last logical point (i.e., only after

the GIT if you're using static instrumentation, after the APP step if for dynamic using a

simulator(s), and after the IPA step for dynamic using physical devices.

 17

Static Instrumentation of an Xcode Project

In this workflow, you'll apply MATT to the Xcode project itself, using the project

parameter. After which, you'll add the steps necessary to build and install to your

simulators and devices.

o Apply MATT using the project parameter (static only)

o Build the APP with an Execute Shell step using xcodebuild

o (optional) Build the IPA with an Execute Shell step using xcrun

o Either Run App in iOS Simulator or Install iOS App on Device (using IPA)

Dynamic Instrumentation of an APP file

In this workflow, you'll apply MATT to the compiled APP file using the appbundle

parameter. If you're also deploying to physical devices, you'll need to mix and

match steps to do both, keeping in mind to build the APP first.

o Build the APP with an Execute Shell step using xcodebuild

o Apply MATT to that compiled APP using iOS APP Bundle

o Run App on iOS Simulator command

Dynamic Instrumentation of an IPA file

In this workflow, you'll delay applying MATT until the IPA is created

o Build the APP with an Execute Shell step using xcodebuild

o Build the IPA file with an Execute Shell step using xcrun,

o Apply MATT to that compiled IPA using ipa

o Install App on iOS Device command.

In the remainder of the Job Creation steps, mix and match the tasks that you need

to build your Jenkins job.

 18

Get Stockfish using the Git Plugin

Next, we will add a step that will get the Stockfish Xcode project that will be used in

the remainder of this tutorial. The following instructions use the Jenkins Git Plugin

(installed above). If you are using your own Source Code Management system simply

select its type and enter its repository URL, as you would normally do.

With the Git Plugin installed in our Jenkins instance, we will add the Source Code

Management step as we would with any SCM tool.

1. In the Source Code Management section, check the Git radio button.

Note: You can specify your own SCM tool and Repository URL here.

2. Enter the repository URL in the entry field:

https://github.com/elitecoder/stockfishchess-ios

 19

Using CloudTest Plugin, MakeAppTouchTestable

The CloudTest Jenkins Plugin wraps the MakeAppTouchTestable commands into a

convenient set of commands that automate the instrumentation steps. Use these

commands. The MATT section is presented first, although it can be anywhere between

the first and last steps in your job as described above.

In the following sections, we will use the CloudTest Jenkins Plugin's

MakeAppTouchTestable module to make an iOS project, a compiled APP file, and

finally an IPA file, TouchTestable. The plugin's MATT forms also provide a means to

use existing MATT commands via the command line.

Using MATT on an APP (Dynamic Instrumentation for Simulator)

Use the following steps to dynamically instrument an APP file. This is typically done

before it is run on a simulator. For example, you can use this step after an Execute

Shell step using xcodebuild.

1. Add a MakeAppTouchTestable step to the job.

 20

2. Apply MATT to the compiled APP by selecting the Input Type, iOS App Bundle

(e.g. the MATT equivalent is the appbundle parameter).

1. Enter the APP name as the Input File (from the workspace root).

2. Optionally, click Advanced to display additional MATT configuration fields.

3. Save the Jenkins job.

Using MATT on an IPA (Dynamic Instrumentation for Device)

Use the following steps to dynamically instrument an IPA file. This is typically done as

the last step before it is installed on a device. For example, you can use this step after

an Execute Shell step using xcrun.

3. Add a MakeAppTouchTestable step to the job.

 21

4. Apply MATT to the compiled IPA by selecting the Input Type, IPA (e.g. the MATT

equivalent is the ipa parameter).

4. Enter the IPA name as the Input File (from the workspace root).

5. Optionally, click Advanced to display additional MATT configuration fields.

 Launch URL – Same as MATT launchurl. For example: my-app://launch

TIP: If you are specifying a custom Launch URL here, be sure to avoid spaces

and underscores, as they will cause an error.

 Back up modified files – Check this to keep backups in the project).

 Additional options - Enter any additional MATT command line parameters.

Most notably, you can use MATT to provision and code sign the dynamically

instrumented IPA file (code signing and provisioning can, of course, be done

using xcrun, which is discussed in the Execute Shell step, Building the IPA for a

Device).

Use the following MATT optional IPA parameters

o -provisioningprofile <profilepath> - Path of the Provisioning profile

to be used for building IPA file. The provisioning profile you input MUST

to be a Distribution profile.

o -signingidentity <signingidentityname> - Name of the signing

identity to be used for codesigning the application. (e.g. "iOS Distribution:

Developer Name")

o -entitlementsfile <entitlementsfilepath> - path of the

entitlements file to be used for codesigning the application

 22

For more about using additional MATT parameters, use:

java sh MakeAppTouchTestable/bin/MakeAppTouchTestable -help

6. Save the Jenkins job.

Using MATT on a Project (Static Instrumentation for Simulators/Devices)

This utility is automatically downloaded by the SOASTA CloudTest Jenkins Plugin and

can be easily specified in your Jenkins job using the following steps.

7. Click Add a Build Step, and select MakeAppTouchTestable from the drop-down

list. This MakeAppTouchTestable step will always be the first step in a Static

Instrumentation workflow, but will come after the APP or IPA is built where

those files are in use on a simulator(s) or device(s).

The Make App TouchTestable form appears.

8. Enter the Xcode project name as the Input File.

 23

9. Optionally, click Advanced to display additional MATT configuration fields.

 Launch URL – Same as MATT launchurl. For example: my-app://launch

TIP: If you are specifying a custom Launch URL here, be sure to avoid spaces

and underscores, as they will cause an error.

 Target – Same as MATT target. For example: Stockfish copy

 Back up modified files – Check this to keep backups in the project folder

(where .xcodeproj resides).

 Additional options - Enter any additional MATT command line parameters.

For more about using additional MATT parameters, use:

java sh MakeAppTouchTestable/bin/MakeAppTouchTestable -help

10. Save the Jenkins job.

 24

Build an APP or IPA using Execute Shell

In the following sections, we will build the app, and generate an IPA.

Note: If an app for simulator is also included in your Jenkins job alongside one

for a real device, it should be built and run prior to building the app for a

device (described in the following steps). This ordering is necessary to

prevent the example mobile app for a simulator from being overwritten by

the subsequent version of the app intended for the physical device.

Using the Jenkins $WORKSPACE Variable

In the Execute Shell sections below, we will build the mobile app for both a simulator

and a device using the Jenkins $WORKSPACE variable. This variable is a shortcut to

the Jenkins folder's workspace sub-folder. For example:

/Users/username/.jenkins/jobs/Stockfish Functional Tests/workspace

The Jenkins $WORKSPACE variable is used as a matter of convenience. It is not

required. When using $WORKSPACE in an Execute Shell step it is a good idea to place

it into double-quotes (e.g. "$WORKSPACE"). This is in case the path includes spaces.

For example, if the name of your job includes spaces so will your workspace.

Build the APP for Simulator (or Before Building an IPA)

The app file is a requirement for deployment to all iOS simulators and devices. For

iPhone and iPad devices, the app file is then used to generate an IPA archive for

deployment.

In order to build the app, the command line xcodebuild command is used.

1. Click Add a Build Step, and select Execute Shell from the drop-down list. Note

that after the step is created you can drag it to the correct place in the

workflow of your Jenkins job.

2. Enter the following lines in the end of the Execute Shell field (revise the paths

to match that of your own environment):

 25

#Build the Stockfish app for simulator

/usr/bin/xcodebuild -sdk iphonesimulator -target "Stockfish" -project

"$WORKSPACE"/Stockfish.xcodeproj" -configuration Release clean build

where:

 <sdk> Either iphonesimulator or iphoneos.

 <target> is the name of the target in the ".xcodeproj" file representing

your project.

Note: When building an app for a simulator, specify the SDK as an argument

(recommended).

 <project> is the name of the ".xcodeproj" file to build.

 <configuration> is the type of build. Refer to /usr/bin/xcodebuild -help

for more information.

Next Steps:

 After the Stockfish.app has been successfully created, make it TouchTestable, if

that is the last step before running it on a simulator.

 You can also build the Xcode project before applying MATT, in which case you

will use Add Build Step, MakeAppTouchTestable, iOS APP Bundle to make it

TouchTestable before you install to a simulator.

 26

Build the IPA for a Device (Static or Dynamic)

Now, we’ll add an Execute Shell step to build the IPA archive file using the Xcode

Tools command, xcrun. In the command below, we will also sign the application using

a provisioning profile. You'll need the correct provisioning profile and iPhone

Developer or iPhone Distribution developer ID to succeed here.

Building the IPA requires the built app (see above steps) and the following command

(be sure to revise the command for your own environment):

1. In the Execute Shell step, enter the following (be sure to revise this example to

use your own paths).

#Build the IPA archive (only required for use with physical iOS devices)

/usr/bin/xcrun -sdk iphoneos PackageApplication -v

"$WORKSPACE"/build/Release-iphoneos/Stockfish.app -o

"$WORKSPACE"/build/Release-iphoneos/Stockfish.ipa --sign "iPhone

Distribution: Username" --embed

"/Users/username/Library/MobileDevice/Provisioning Profiles/20454FCB-7B8C-

4996-BDD3-E660DB279261.mobileprovision"

where:

 <sdk> in this case the SDK to use is 'iphoneos'.

 <output> or -o. The output path and filename are where the IPA archive

is created.

 <sign> with the Code Signing Identity found in the Xcode Organizer's

Teams node. When deploying to a device, the iPhone Distribution

identity is generally used (required for App Store submissions, etc.). You

can also open your Xcode project and navigate to the Build Settings tab,

Code Signing section to view the Code Signing Identity.

 27

Note: In general, you want one and only one provisioning profile each for the

iPhone Developer and iPhone Distribution identities. Apple warns against

multiple provisioning profiles, which is known to cause Xcode conflicts,

and which may in some cases prevent your Jenkins job from succeeding. If

you run into Code Signing problems it may be necessary to resolve your

setup before continuing. Refer to the Best Practices for Maintaining

Certificates and Provisioning Profiles article in the iOS Developer Library

for more information.

 <embed> the file name and extension of the mobile provision to use. The

provisioning profiles are found in the Xcode Organizer, Library,

Provisioning Profiles node. Select the profile in the Organizer window's

Library section and then right-click to choose "Reveal Profile in Finder."

Specify the path and file name with extension in your xcrun command.

You can also locate the profile using Finder's Go To Folder command

using: "~/Library/MobileDevice/Provisioning Profiles".

Note: In some cases, usually on the occasion of an Xcode update, users have

encountered the following error while using xcrun to sign the app:

/var/folders/d9/swbmcb491lzcnl2kk1rlbhx80000gn/T/xzFYPWzzYi/Payl

oad/Stockfish.app: object file format unrecognized, invalid, or

unsuitable

 If this error is encountered, try adding the following symbolic link (it

should only be necessary to do so once):

export CODESIGN_ALLOCATE="/Applications/Xcode.app/Contents/Devel

oper/usr/bin/codesign_allocate"

Run /usr/bin/xcrun -help for more information about this Xcode command-line

utility.

2. Click Apply on the Job page.

Once the IPA archive has been created, we are ready to deploy our mobile app to any

tethered, provisioned iPad or iPhone.

Next Steps:

http://developer.apple.com/library/ios/#documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificatesandProvisioningAssets/MaintainingCertificatesandProvisioningAssets.html
http://developer.apple.com/library/ios/#documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificatesandProvisioningAssets/MaintainingCertificatesandProvisioningAssets.html

 28

 After the Stockfish.ipa has been successfully created, make it TouchTestable,

before installing it on a device.

 If the IPA was static instrumented many steps before now, you are ready to

install it to a device.

 29

Install to a Simulator or Device

In the following two sections, we will use the CloudTest Jenkins Plugin, Run App in

iOS Simulator and Install iOS App on Device commands to deploy the newly

TouchTestable apps.

TIP: In Jenkins jobs where an app will be generated for BOTH a simulator and

a physical device, it is necessary to generate and run the simulator app

first to prevent it from being overwritten by the subsequent version of the

app intended for the physical iOS device.

Run the App File on a Simulator

Once an App file has been created, and been made TouchTestable, whether by the

static project or dynamic instrumentation using the iOS App Bundle command, use

the following steps to run it on a simulator.

1. Click Add a Build Step, and select Execute Shell from the drop-down list. Note

that after the step is created you can drag it to the correct place in the

workflow of your Jenkins job.

2. Select Run app in iOS Simulator.

The Run App in iOS Simulator form appears.

 30

3. Enter the app folder path. In this case, use build/Release-

iphoneos/Stockfish.app.

TIP: The four types possible here are Release-iphoneos, Release-

iphonesimulator, Debug-iphoneos, Debug-iphonesimulator.

4. Click Apply on the Job page.

Next Steps:

 Once your mobile app is on the Simulator, the Play Composition step is added.

Install the IPA on a Device (Static or Dynamic)

Once an IPA file has been built, make it TouchTestable using CloudTest Jenkins Plugin,

MATT, IPA. After which, you can use the following CloudTest Plugin steps to install the

TouchTestable IPA onto a physical device.

1. Click “Add Build Step”. Note that after the step is created you can drag it to the

correct place in the workflow of your Jenkins job.

2. Select Install iOS App on Device.

The Install App in iOS Device form appears.

 31

3. Enter the app folder path. For example, stockfishchess-ios/build/Release-

iphoneos/Stockfish.ipa.

Note: The alert indicating that the IPA path doesn't match appears in those

cases where the directory doesn't exist before the build actually happens.

Since this job builds before installing the app, the folder will exist when

the Install iOS App on Device step runs, and the alert can be ignored.

4. Click Apply on the Job page.

5. Save the Jenkins job.

Next Steps:

 Once your mobile app is on the Simulator, the Play Composition step is added.

 32

TouchTest Agent for iOS 9+

Those using iOS 9 or later will need to use the TouchTest Agent app. This app

facilitates continuous integration on iOS 9 or later devices.

There are two ways to get the TouchTest Agent app.

Get the TouchTest Agent IPA by Running MakeAppTouchTestable Utility

Use the following command:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -touchtestagent -

output ~/tmp -provisioningprofile

~/Library/MobileDevice/Provisioning\

Profiles/example.mobileprovision -signingidentity "My Identity" -

appidprefix DW4ETSG5SA

Parameters:

 -provisioningprofile <profilepath> - Path of the Provisioning profile

to be used for building IPA file. The provisioning profile you input MUST to be

a Distribution profile.

 -signingidentity <signingidentityname> - Name of the signing

identity to be used for codesigning the application. (e.g. "iOS Distribution:

Developer Name")

 -appidprefix <Application Identifier Prefix> - Application

Identifier Prefix of the Provisioning Profile (or Team Identifier).

 33

 Get the TouchTest Agent Project from Resources Page

Click TouchTest Agent iOS Project under TouchTest Resources page, Dowloads.

Once this downloads, open the TouchTest Agent iOS Project in Xcode, select your

device, and hit play.

Note: For iOS 9 or later, any time your device launches a new application (first

time only), you need to tap Open twice; first, to allow TouchTest Agent to

open the new app and second, to allow the app to open TouchTest Agent

at the end of the session.

 These actions will resemble the pop-ups below:

 34

Playing the Composition

Finally, we will add a build step using the CloudTest Jenkins Plugin, Play Composition

command.

1. Add a build step and select Play Composition from the drop down.

TIP: If you are adding more than one composition, click the down arrow to

expand the entry field before entering the first composition path.

2. Enter each composition to play using its full SOASTA Repository path (shown

below).

 35

Note: Ensure that you have dragged all the steps into the right order before

building. The order should be the same as in this tutorial, but may vary

slightly depending on whether you're using devices, simulators, or both.

3. Click Save to complete the Jenkins job.

Building the Project

1. To build the project, click the "Build Now" link.

The build will start. After a short delay, you should see a progress bar appear on the

left side of the page. Click this progress bar to watch the build process "live" in the

Console view.

You should see the following happen:

a. Jenkins checks out the source code from Git, and runs the

MakeAppTouchTestable utility.

b. Jenkins performs whatever Execute Shell steps you've placed to invoke Xcode

to build an app for Simulator, an app and IPA for a physical device, or both.

The Run steps for either a device or simulator run consecutively after the shell

that pertains to either one.

c. Jenkins plays the CloudTest compositions using SCommand. On the tethered

device, you should see the Stockfish app launch and run through the test

 36

steps. When the test finishes, Stockfish will exit, and the SOASTA TouchTest

Agent page will re-open.

 37

Inspecting Test Results in Jenkins

For a successful test with no failures, the Test Result page merely lists the All Tests

section with the given package (i.e. in this case the package equates to a CloudTest

repository folder).

 Clicking the Package link opens the subsequent CloudTest folder.

 38

Things get more interesting when an error in the test occurs. The subsequent

SCommand output is displayed (in text) on the Jenkins Test Result page (as discussed

above).

In this case, the All Failed Tests section is added with the name of the test listed with

a link to more of the SCommand details. Clicking the link under the Test Name

section where the composition is named displays an Error detail page (for the given

error).

In the error above a validation in the Composition for Fool’s Mate has failed.

 39

1. To view this error in the CloudTest, Result Details dashboard, click the plugin

link provided (i.e. "Click here to see the SOASTA CloudTest dashboard for this

test."

After the plugin link is clicked, enter CloudTest credentials whenever required.

 After credentials are entered, the dashboard tab opens, displays the test result,

and jumps to the relevant error.

 40

From here, the Result Details dashboard can be navigated as within any CloudTest

dashboard. Refer to Result Details Dashboard for a quick review of Result Details

features.

http://cloudlink.soasta.com/t5/Knowledge-Base/Result-Details-Dashboard/ba-p/710

 41

Appendix I: Waking Up an iOS Device

The SOASTA CloudTest Jenkins Plugin includes the ability to wake up a device. This

technique is useful in mobile device test labs as an energy saving measure and can be

used in coordination with the ability to reboot a device. Note that the TouchTest

Agent should be the Safari page running on the sleeping device for test execution to

succeed.

1. Add a build step using Wake Up iOS Device. Note that after the step is created

you can drag it to the correct place in the workflow of your Jenkins job.

The Wake up iOS Device form appears. This command will wake up any device

tethered on the Mac where the Jenkins job runs (for example on a slave node

assigned to the job).

Note: Ensure that the device(s) do not have passcodes in effect.

2. Drag the build step into the correct position. In general, at the beginning of a

job and before Xcode build steps.

3. Click Apply on the Job page.

 42

 43

Appendix II: Rebooting an iOS Device

The SOASTA CloudTest Jenkins Plugin includes the ability to reboot a device as part

of test lab setup. This technique is useful in mobile device test labs to refresh the iOS

device state, which can be subject to degradation over time.

1. Add a build step using Reboot iOS Device. Note that after the step is created

you can drag it to the correct place in the workflow of your Jenkins job.

The Reboot iOS Device form appears. This command will reboot any device tethered

on the Mac where the Jenkins job runs (for example on a slave node assigned to the

job).

Note: Ensure that the device(s) do not have passcodes in effect.

2. Drag the build step into the correct position. In general, at the beginning of a

job and before Xcode build steps.

3. Click Apply on the Job page.

 44

 45

Appendix III: Importing Source Controlled SOASTA XML

The SOASTA CloudTest Jenkins Plugin includes the ability to import SOASTA objects

such as test clips from exported XML. This technique is useful in test environments

where more than one tester is working as part of a team.

For example, a team might have access to the following:

 1 CloudTest Pro environment being used for CI, with Jenkins pointed at it.

 1 version control system.

 3 CloudTest Lite users, working on their own tests, do the following:
o The CloudTest Lite users export their compositions and clips using the non-

zipped XML, and check them into SVN, on a regular basis.

o The Jenkins job checks them out from SVN, imports the XML into the
CloudTest Pro environment, and then runs the compositions on that same
environment. The exported objects can include dependent objects but the
export should be in XML format and not zipped. Refer to Export and Import
SOASTA Objects for steps.

Importing CloudTest Objects

1. Export the object(s) to import and check them into the repository that also has

the Xcode project.

2. Add a build step using Import CloudTest Objects. Note that after the step is

created you can drag it to the correct place in the workflow of your Jenkins job.

The Import CloudTest Objects form appears. If you will be exporting more than one

XML file click the down arrow to expand the form before proceeding.

http://cloudlink.soasta.com/t5/Knowledge-Base/Export-and-Import-SOASTA-Objects/ba-p/15365
http://cloudlink.soasta.com/t5/Knowledge-Base/Export-and-Import-SOASTA-Objects/ba-p/15365

 46

4. Specify the file name of each XML file to import (one per line).

TIP: You can also use wildcards here. For example, if the CloudTest objects

were checked into a "testobjects" folder, then entering

testobjects/*.xml here would import them all.

5. For this scenario, accept the default conflict resolution mode, which is "Replace

the existing object(s)."

6. Drag the build step into the correct position. In general, before any Play

Composition steps.

7. Click Apply on the Job page.

 47

Appendix IV: Jenkins Plugin, Transaction Thresholds

The Transaction Threshold command—which was made available in the SOASTA
CloudTest Plugin, version 2.17—provides users with the ability to automate the validation
of Transactions in a composition using CloudTest metrics, such as Average Response
Time or Errors per Transaction.

For more details, please visit Setting Transaction Thresholds in Jenkins.

http://cloudlink.soasta.com/t5/CloudTest-Knowledge-Base/Setting-Transaction-Thresholds-in-Jenkins/ta-p/44611

 48

 49

 SOASTA, Inc.

444 Castro St.

Mountain View, CA 94041

866.344.8766

http://www.soasta.com

http://www.soasta.com/

