SCASTA

TouchTest™ Jenkins Cl for iOS Tutorial

SOASTA TouchTest™ Jenkins Cl for iOS Tutorial

©2015, SOASTA, Inc. All rights reserved.

The names of actual companies and products mentioned herein may be the
trademarks of their respective companies.

This document is for informational purposes only. SOASTA makes no warranties,

express or implied, as to the information contained within this document.

Table of Contents

Prer@QUISITES...... .o oeeeeeeeeececeeeeeceeceeeeeeeeeeesaeesaeeneesnseseesseesasesassssssseessessasesasssassseessessasesasssaess 1
CloudTest Utilities and PIUGINS.........co oo ioeieieeeeeeeceeeeeceeeeeeeneeneeeeseeessessessessesssssssssssssssesesns 2
TouchTest Utilities and PIUGINS........ccoo ittt ssssssssssssssnsns 2
Prerequisites for Deploying to @ Mac using Xcodecooeveeniernensceeeneecneesecneseecenscenencs 3

Test COMPOSITION Prer@QUISITES ...t st sssss st sss s ss st sssssans 4
About Shell Steps and the Signing/Provisioning Prer@qUISIte........o.crinerenrienneennieresinsiesesienns 6

CloudTest Continuous Integration SUPPOIt..........cooiviiiicinnriicireeeceeeeeeeaseneene 7
Installing the SOASTA CloudTest Jenkins/Hudson Plugin. . 8
Configuring the SOASTA CloudTest Jenkins/Hudson Plugin...........cccceceeeeveeeneeeneescenencencncne 10
Installing the Git PIUGIN ...ttt sttt e s ses s sas s naas 11

Creating @ JENKINS JOD ... eeeeecieeeeeeecceeeseeseesnecseeeesaesassssessessessssssesseseeseesassnsesees 13
Jenkins Workflows for TOUCRTEST.........coiieiirieeieceeecteeeneseenesneseeeeeeeaeeessnsssnsasessensans 16

Static Instrumentation of an Xcod@ ProOJECt........ it eseees 17
Dynamic Instrumentation Of @an APP fil@.......ccoee st senes 17
Dynamic Instrumentation Of @n TPA fil@.......iie st senes 17
Get Stockfish using the Git PIUGINooiiioiieeeceeeteceeeeeeeesneeeeseees e esnesesnsenes 18
Using CloudTest Plugin, MakeAppTouchTestable...........cccconnnnniiiieieiecneececnen. 19
Using MATT on an APP (Dynamic Instrumentation for Simulator).........onccnnrinnenes 19
Using MATT on an IPA (Dynamic Instrumentation for DeVICe)cumrenmreeneeeennreeneeereseinenes 20

Using MATT on a Project (Static Instrumentation for Simulators/Devices)c.comvecnmrrenees 22

Build an APP or IPA using Execute Shello o oeeeeeeeeeeeeeeeeeeeeeeeeeseeeenees 24
Using the Jenkins $WORKSPACE Variable ... sssssessssssssssssssnns 24
Build the APP for Simulator (or Before Building an IPA).......coccormreoneeeieneieeiseseesseeessssisenes 24
Build the IPA for a Device (StatiC OF DYNAMIC) ...overveeereerceerieseseisesesseesssesesesesssessssessssesssssssseees 26

Install to @ SIMUIAtOr OF DEVICE.........cuiieiericieiericctnccntecescsncteeesssesssssessssssssnsasessansns 29
Run the App File 0N @ SIMUIBTOT ...t 29
Install the IPA on a Device (StatiC OF DYNAMIC).......oiririiereeieeereeieeseeisseesesssseesseesseesssssseseeens 30

TouchTest Agent fOr i0S D+ i iiicieeeeeeiceeeeeeeneesneeneeeeseesassssessessesassasessessessssassnsanes 32
Get the TouchTest Agent IPA by Running MakeAppTouchTestable Utility........cccoovoneinniunneee 32
Get the TouchTest Agent Project from Resources Pageoeenereenneeeneeeesnseessesesssseseseens 33

Playing the COMPOSItION.........ooeeieeieeeeeeeeeeeeeeeeeceseeeeeeeeeesessessessesssssasssssssssssassessassassassassess 34

BUIlAING the PrOjJECt ... eeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeseeeeseesessessssssssessessessessessessessassessessassessassess 35

Inspecting Test ReSuUlts in JENKINS ...ttt e e e e seas 37

Appendix I: Waking Up an iOS DEVICEcrrnieniiieieieieiecestesteseesessesssssssssssssssssesssssens 41

Appendix Il: Rebooting an iOS DEVICEcceveeeeereereereereeserreeseeseesessessesseesessessessessessassassessassasss 43

Appendix Ill: Importing Source Controlled SOASTA XML.......cccceceveereererreereererseesessesessasenas 45
IMPOrting ClOUdTESt ODJECTS ...ttt 45

Appendix IV: Jenkins Plugin, Transaction Thresholds...........ccccocoviiiininninnnnnnnnnninniinieene 47

Prerequisites

This tutorial guides the user through the process of using the Jenkins continuous
integration tool combined with the CloudTest Jenkins/Hudson Plugin in tandem with

an example Xcode project and preconfigured CloudTest test compositions.
This tutorial provides guidance for two audiences:

e Users who would like to add iOS Testing using Xcode to a pre-existing Jenkins

setup

e Users who are iOS Developers starting out with TouchTest who would also like

to add TouchTest to a continuous integration setup

TIP: If your organization is not already using Jenkins—refer to the
documentation on the Use Jenkins page to get started. Additional Jenkins

installation references are included at the end of this guide.

A Jenkins job will be defined that uses git to retrieve an Xcode project, then uses the
MakeAppTouchTestable utility to make that Xcode project touchtestable, and which
then deploys either an IPA to a device or the built APP to a simulator or device(s)
using a deployment step; after which several pre-existing test compositions are called
using sCommand to run silently in CloudTest and on the specified devices. Finally,
CloudTest results are inspected inline in Jenkins, also via the CloudTest

Jenkins/Hudson Plugin.

Note: A version of the Stockfish chess game, an open-source project available
from GitHub, has been customized to include the Xcode project that is
used as the example project. You can, of course, substitute your own

mobile app’s source and Xcode project for this example.

https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins

CloudTest Utilities and Plugins

Before proceeding, download the following CloudTest plugin and utility software from

the CloudTest Resources page, Downloads section.

e CloudTest Jenkins/Hudson Plugin (this Jenkins/Hudson plugin will be installed
using the Jenkins plugin interface). Jenkins CloudTest Plugin version 2.9 or later

and TouchTest 51.07 or later are required for dynamic instrumentation.

Downloads

(] Browser Recorder Firefox Add-on
CloudTest Command-Line Client
[0 SCommand QC Integration VB Script

[CloudTest Jenkins/Hudson Plugin

¢ CloudTest Command Line Client (also known as sCommand, this command
line interface utility will be called at the appropriate time via a Jenkins job using
the CloudTest Jenkins Plugin's MakeAppTouchTestable, Play Composition(s)
build step). Users may opt to do some tasks via the Plugin while others are

accomplished via the sCommand utility. In either case, you should install the
utility.

TouchTest Utilities and Plugins

Next, download the following TouchTest software from the TouchTest Resources
page, Downloads section.

e MakeAppTouchTestable Utility (this utility will be called at the appropriate

time via a Jenkins job using an Execute Shell build step)

Downloads

& Make App TouchTestabie Utility
8 TouchTest Web iOS Project

iOS App Installer Utility
[TouchTest Agent Android app
[TouchTest Web Android app

Note: The CloudTest user specified to run the MakeAppTouchTestable utility

must be a user with Mobile Device Administrator rights.

e For iOS only, the CloudTest iOS App Installer Utility is required (this utility
contains two executable files; the ios app installer, which is used to install
IPA files to iOS physical devices; and the ios sim launcher, which is used to

install compiled APP bundle files). This archive contains two executable files:

o For deployment to Simulators, use the ios sim launcher executable
found in the iOS App Installer Utility at the appropriate time(s) via a
Jenkins job using an Execute Shell build step.

o For deployment to iPhone and iPad devices, use the iOS App Installer
Utility to deploy .ipa archives to the physical device(s). This executable
can be called at the appropriate time(s) via a Jenkins job using an
Execute Shell build step.

The appropriate executable will be called at the appropriate time(s) via a

Jenkins job using an Execute Shell build step.

Prerequisites for Deploying to a Mac using Xcode

One of the key steps during an iOS automated build is deploying the app to your test
device, without requiring any human interaction. Typical solutions (e.g. over-the-air
distribution) require that the user accept a prompt. SOASTA's iOS App Installer Utility
includes two tools that sifently deploy either an IPA file or an App file.

You will need the following:

1.

A dedicated machine running Mac OS X, with Xcode 4.2 or later. If you are

using Jenkins or Hudson, this can be either the master node or a slave.

One or more tethered devices. If you have more devices than USB inputs, you
can use a USB hub. Note also that sufficient power to prevent the device from
running down unexpectedly should be available via that USB input. Simulators

can also be used.

A note on tethering: SOASTA TouchTest™ does not require tethering for
recording or playback. However, you do need to tether the device for silent

deployment of your app.

The physical iOS device(s) should have the iOS "Auto-Lock" setting set to

"Never" and passcodes should not be in use on any device.

Test Composition Prerequisites

The test compositions you will use must already exist on the CloudTest instance that

you specify and you must use the correct SOASTA Repository path to invoke them.

The test composition specifies the device(s) that it will run on.

This tutorial will call two such test compositions. All steps are performed from the

same Jenkins job that will use either Static Instrumentation or Dynamic

Instrumentation.

For Static Instrumentation the Jenkins workflow is

Retrieve the project source code using Git (or another SCM tool)
Make the app touchtestable

Build the app (or app and ipa) for the specified devices/simulators using an

Execute Shell step
Deploy the app/ipa on the specified devices/simulators

Silently play the specified compositions

For Dynamic Instrumentation the Jenkins workflow is

Retrieve the project source code using Git (or another SCM tool)

Build the app (or app and ipa) for the specified devices/simulators using an

Execute Shell step

Make the APP file touchtestable or generate the IPA from the APP and then
make the IPA touchtestable

Deploy the app/ipa on the specified devices/simulators

Silently play the specified compositions

If you're a new TouchTest user, refer to the following documentation before

proceeding with this tutorial.

TIP:

TIP:

Basic TouchTest recording is covered in the TouchTest iOS Tutorial. Jenkins

users should note the advantages of static vs. dynamic instrumentation with

their own development environment in mind.

Determining whether to use dynamic instrumentation of a project file, or
dynamic instrumentation of an APP or IPA file, before creating the Jenkins

job will save a lot of trial and.

The Simulator(s) or Device(s) you intend to use must be registered with your
CloudTest instance. Refer to the "Registering Your Device to Use TouchTest™"

section of the TouchTest iOS Tutorial for steps.

Advanced TouchTest recording, including the use of validations and other
accessors in the open source Stockfish mobile app, are covered in the

TouchTest Advanced Tutorial.

The test clips shown in the result dashboards at the end of this were
created using the GitHub version of Stockfish used in this guide simply by

following the steps presented in the following two TouchTest Advanced

Tutorial sections:

» Create a Simple TouchTest Clip — King Gambit Declined

» Advanced Clip Editing — Fool's Mate

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf

About Shell Steps and the Signing/Provisioning Prerequisite

In general, the best practice for all shell steps presented in this tutorial is to first

execute all of them from the command line.

With respect to signing and provisioning, you must perform the following one-time
procedure from Terminal to sign each profile/application combination that is in its first

use. Provisioning will not be silent until this is done.

TIP: If signing is not done, then a "User interaction not allowed" error will
occur in the build. This is because the Operating System requires a user to
sign an application using a specific Provisioning profile for the first time.
In that case, the Operating System needs a user to authorize the signing

process.
Use the following steps:
1. In Terminal, run the xcrun command from your Jenkins job manually.

Note: If you are using the Jenkins $WORKSPACE variable, you'll need to change
it to a Mac OS X path to work here.

For example: "/Users/username/.jenkins/jobs/Stockfish Functional

Tests/workspace"

When you do that, OS will popup a dialog box asking permission for the

signing process.

2. Choose "Always allow" and this error will not show up again.

CloudTest Continuous Integration Support

SOASTA CloudTest includes first-class support for including test output in build
reports for Jenkins and Hudson via the CloudTest Command-Line Client (a.k.a. the
SCommand utility). Additionally, the CloudTest Jenkins/Hudson Plugin provides visual

integration of CloudTest dashboards within Jenkins itself.

CloudTest outputs JUnitXML-compatible test output that is the basis for test result
display in Jenkins. Since Jenkins provides out-of-the-box JUnit support these result
details from a given test composition run in Jenkins will appear on the corresponding

Test Results page in Jenkins.

By placing all its XML into a directory that is also provided to Jenkins, we can easily
display these JUnit-friendly test results inside Jenkins. Using this configuration, a

Jenkins Test Result detail page will display details from CloudTest.

While it is not necessary to install the CloudTest Jenkins/Hudson Plugin to utilize
CloudTest's JUnitXML-formatted output in Jenkins in this manner, plugin installation
adds the capability to also jump to specific test composition errors in the CloudTest

Result Details dashboard from within Jenkins.

Regression

Soasta.tutorial.advanced.Composition for Fool's Mate Clip (from Soasta.tutorial.advanced.Compaosition for Fool's Mate Clip)

Failing for the past 1 build (Since

Took
[#fadd dest
Q\Jalida:io" "verifyElementText” failed. Expected: "Click here", validation parse error: The locator "text=0K" did not match any elements.
Click here to hide the SOASTA CloudTest dashboard
®
CloudTest
B
/ I cel
WAl (B (] (s /L o (@ venp (O pay) I resus [
Result Details Dashboard) || +
Result Details
Y Element Staws: [15 ¢ |[_ Al +| | ElementType:| Is + | AN : | Al :| | Operation:| |s + | Al |
¥ B Composition for Fool's Mate Clip (E]) 3¢ completed - With Errors | Total Gompenents: 15 Tetal Messages and Actions: 10 (Lo Jump o now |
¥ £ Band 1

o ma'-

Soasta.tutorial » Advanced » Composition for Fool's Mate Clip

General

Error(s): 8 Validation verifyElementText failed
Expected: "Click here", validation parse error: The locator "text=0K" did not match any elements

Name: Soasta.tutorial/Advanced/Composition for Fool's Mate Clip

In the screenshot above, the error heading and detail text are an output of the
CloudTest Jenkins Plugin, Play Composition(s) command for the test shown. The
hypertext link for the CloudTest dashboard is an output of the plugin, which has
already been clicked to show the CloudTest dashboard. Once the Jenkins plugin is

installed, The Click here... link will appear once the Post-build action box is checked.

Clicking the link, and providing CloudTest credentials, will then display the precise

failure inline in Jenkins for the given CloudTest result.

Installing the SOASTA CloudTest Jenkins/Hudson Plugin

Use the following steps to install the CloudTest Plugin from within your Jenkins

instance. You must perform this installation to succeed using this tutorial.

1. In Jenkins, click Manage Jenkins, and then click Manage Plugins.

Manage Jenkins

i, New version of Jenkins (1.471) is available for download (changelog).

T &
= Configure System
\y Configure global settings and paths.
|

Reload Configuration from Disk

Discard all the loaded data in memory and reload everything from file system. Useful when you modified config files directhy

Manage Plugins r
Add, remove, disable or enable plugins that can extend the functionality of Jenkins.

Displays various environmental information to assist trouble-shooting.

System Log
System log captures output from java.util.logging output related to Jenkins.

@

&
gww
B

2

Click the Plugin Manager, Available tab.

3. Locate the SOASTA CloudTest Plugin in the list (using Cmd+F and "SOASTA" is

a quick way to locate it).

Checkstyle Plugin

[l 3.35
This plugin generates the trend report for Checkstyle, an open source static code analysis program.
Clang Scan-Build Plugin
(] 1.4

This plugin allows you to execute Clang scan-build against Mac or iPhone XCode projects.
SOASTA CloudTest Plugin

This plugin integrates SOASTA CloudTest and SOASTA TouchTest features into Jenkins.

Clover Plugin

This plugin allows you to capture code coverage reports from Clover. Hudson will generate and track code coverage across time. 4.0.6
This plugin can be used without the need to modify your build.xml.

Clover PHP Plugin

This plugin allows you to capture code coverage reports from *PHPUnit*. For more information on how to set up PHP projects with 0.3.3
Jenkins have a look at the Template for Jenkins Jobs for PHP Projects.

Cohartiirs Pliain

4. Click the Install without Restart button at the bottom of the page.

The Installing Plugins/Upgrades page appears and indicates success once the install
completes.

Jenkins Update center

Back to Dashb d - -
Back to Dashboard Installing Plugins/Upgrades
& Manage Jenkins
Preparation

'l': Manage Plugins + Checking internet connectivity
o + Checking update center connectivity
+ Success

SOASTA CloudTest Plugin 0 Success

Go back to the top page
(ywou can start using the installed plugins right away)

@- || Restart Jenkins when installation is complete and no jobs are running

Configuring the SOASTA CloudTest Jenkins/Hudson Plugin

Before using the plug-in, you will need to provide the CloudTest server information, in

the Manage Jenkins > Configure System page.

Global properties

Environment variables
Tool Locations
Maven Configuration

Default settings provider Use default maven settings

Default global settings provider | |se default maven global settings

CloudTest Servers

URL http://192.168.1.55/

User Name [goasTa_DOC

Password

Success! Test Connection

Add

1. Enter the CloudTest URL and the matching credentials. SOASTA recommend’s

creating a dedicated CloudTest account for Jenkins to use.

2. Save the Configure System page before exiting.

10

Installing the Git Plugin

Use the following steps to install the Git Plugin from within your Jenkins instance. This
will allow us to use Git as a Source Code Repository to retrieve the example project,
Stockfish.

TIP: Git is a distributed version control system used for software development.
It is not necessary to signup or login to GitHub in order to checkout the
code using the following command. In the Source Code Management

section, click Git.

If you are using your own app, you can skip this requirement and then

substitute the SCM tool and repository to use in the place of Git.

1. In Jenkins, click Manage Jenkins, and then click Manage Plugins.

Manage Jenkins

download (changelog

Configure System
Configure global settings and paths.

Reload Configuration from Disk
Discard all the loaded data in memory and reload everything from file system. Useful when you modified config files directhy

Manage Plugins
Add, remove, disable or enable plugins that can extend the functionality of Jenkins.

Systemn Information
Displays various environmental information to assist trouble-shooting.

I Q3

> (I

Systemn log
System log captures output from java.util.logging output related to Jenkins.

Click the Plugin Manager, Available tab

3. Locate the Git Plugin and check it as well.

Upaated, PlEase ToTward any 1S5Ues 10 Paul Caruana [parana@ser ena. ooy,
File System SCM
Use File System as SCM.
@- Git Plugin
This plugin allows use of Git as a build SCM. Git 1.3.3 or newer is required.
Harvest Plugin
This plugin allows you to use CA Harvest as a SCM.

HP Application Automation Tools

This plugin allows Jenkins to trigger HP tests such as:Test Sets on Application Lifecycle Manag
Service Test.

11

You can verify plugin installation on the Manage Plugins, Installed tab:

Jenkins Plugin Manager

4 Back to Dashboard Updates = Available Installed | advanced
Enabled Name |
Manage Jenkins
4 Jenkins Mailer Plugin

External Manitor Job Type Plugin

LDAP Plugin
pam-auth
Ant Plugin

SOASTA CloudTest Plugin
Integrates SOASTA CloudTest and SOASTA TouchTest features into Jenkins.
Javadoc Plugin

CVS Plugin
Integrates Jenkins with CVS version control system.

Jenkins GIT client plugin

e EE R

Jenkins GIT plugin
This plugin integrates GIT with Jenkins.

—_—

®

Maven 2 Project Plugin

Note: = Some users may encounter a "Failed to connect to repository" error when
using the Jenkins Git Plugin. If this occurs, set the plugin's path (i.e.
/usr/local/git/bin/git or wherever the executable is located) to your git
executable in the Manage Jenkins > Configure System > Git > Git

Installations > Installation directory field.

Alternately, you can use an Execute Shell step in place of installing the
plugin that will call the git command; however, this also requires the
correct path to the executable. The script in the step would be:

#Download Stockfish from GitHub

/usr/local/git/bin/git clone
https://github.com/elitecoder/stockfishchess-ios

12

Creating a Jenkins Job

The Jenkins job created below will run on the Mac machine with Xcode and one or
more properly provisioned USB-attached devices. The job will have build steps that
the CloudTest Jenkins Plug-in Command to download a project from source, run the
MakeAppTouchTestable utility on that project, build and deploy using the deploy

script, and call SCommand to silently play a list of compositions.

TIP: Your Jenkins workflow will differ based on the MATT instrumentation
methods you have decided to use. You can review them a second time in

the TouchTest iOS Tutorial

1. In top level Jenkins dashboard, click New Job.

Jenkins

= New Job *" Welcome to Jenkins!
&} Peosle

~ Build History

7 Manage Jenkins

Build Queue

Mo builds in the queue.

Build Executor Status
Status
1 Idle
2 Idle

13

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf

The Job name page appears.

Job name [gyqckfish Functional Tests

@ Build a free-style software project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with g
| Build a maven2/3 project
Build @ maven2 project. Jenkins takes advantage of your POM files and drastically reduces theg
| Build multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on nf
| Monitor an external job

This type of job allows you to record the execution of a process run outside Jenkins, even on
automation system. See the documentation for more details.

| Copy existing Job

Copy from

1. Enter a job name and check the first option, "Build a free-style software

project”.

14

The Job Details page appears.
2. Enter a description for this job:

e For example, "Checks out the Stockfish source code with Xcode project, deploys

the app, and runs a suite of CloudTest compositions."

Leave the Job open and continue with the following section.

Project name | gyqeyfich Functional Tests 2

Description €hecks out the Stockfish source code with Xcode project, deploys the app, and runs a suite
of CloudTest compositions.

[Raw HTML] Preview

Discard Old Builds
GitHub project
This build is parameterized

Disable Build (Mo new builds will be executed until the project is re-enabled.)

Execute concurrent bullds if necessary

O290 © @

Restrict where this project can be run

Advanced Pro Options

Source Code Management
| CWS
CWS Projectset
Git
(=) MNone

Subversion

Build Triggers
Build after other projects are bullt @

Build periodically

Build when a change is pushed to GitHub
Pall SCM

Build

| Add build step =

Post-build Actions

| Add post-build action + |

15

Jenkins Workflows for TouchTest

The CloudTest Jenkins Plugin is used to do all tasks in the Jenkins job, with the

exception of Build tasks, which are performed using xcodebuild and xcrun.

Because there are different possible Jenkins job workflows, the possible steps are

presented a /a carte. For each Jenkins job there will be (minimally):
o A First step; used to retrieve the source project (all workflows)
o In between the first and last steps, each Jenkins job will have:
» A CloudTest Plugin, MakeAppTouchTestable step;
» with one or more Build steps,
» and one or more Install/Run steps
o A Last step; to Play the Composition

Note: Provisioning and codesigning can be performed either using the
CloudTest Jenkins Plugin, MATT's Advanced steps to enter the APP/IPA
optional parameters (refer to the relevant sections). Or, these steps can be

done using xcrun.

There is a one-time provisioning profile step that should be run prior

to running the complete Jenkins job.
As discussed in the TouchTest iOS Tutorial,
e Static instrumentation applies MATT to the Xcode project file
e Dynamic instrumentation applies MATT to the APP or IPA

In general, you will delay the MATT step only until the last logical point (i.e., only after
the GIT if you're using static instrumentation, after the APP step if for dynamic using a

simulator(s), and after the IPA step for dynamic using physical devices.

16

Static Instrumentation of an Xcode Project

In this workflow, you'll apply MATT to the Xcode project itself, using the project
parameter. After which, you'll add the steps necessary to build and install to your

simulators and devices.

o Apply MATT using the project parameter (static only)

o Build the APP with an Execute Shell step using xcodebuild

o (optional) Build the IPA with an Execute Shell step using xcrun

o Either Run App in iOS Simulator or Install iOS App on Device (using IPA)
Dynamic Instrumentation of an APP file

In this workflow, you'll apply MATT to the compiled APP file using the appbundle
parameter. If you're also deploying to physical devices, you'll need to mix and

match steps to do both, keeping in mind to build the APP first.
o Build the APP with an Execute Shell step using xcodebuild
o Apply MATT to that compiled APP using i0S APP Bundle
o Run App on iOS Simulator command

Dynamic Instrumentation of an IPA file

In this workflow, you'll delay applying MATT until the IPA is created
o Build the APP with an Execute Shell step using xcodebuild
o Build the IPA file with an Execute Shell step using xcrun,
o Apply MATT to that compiled IPA using ipa
o Install App on iOS Device command.

In the remainder of the Job Creation steps, mix and match the tasks that you need

to build your Jenkins job.

17

Get Stockfish using the Git Plugin

Next, we will add a step that will get the Stockfish Xcode project that will be used in
the remainder of this tutorial. The following instructions use the Jenkins Git Plugin
(installed above). If you are using your own Source Code Management system simply

select its type and enter its repository URL, as you would normally do.

With the Git Plugin installed in our Jenkins instance, we will add the Source Code

Management step as we would with any SCM tool.

1. In the Source Code Management section, check the Git radio button.

Source Code Management

Ccvs

= Git

R itori)
epositories Repository URL [piins: /4github.comyelitecoder/stackfishchess-ios

Delete Repository

Add

Note: You can specify your own SCM tool and Repository URL here.

2. Enter the repository URL in the entry field:

https://github.com/elitecoder/stockfishchess-ios

18

Using CloudTest Plugin, MakeAppTouchTestable

The CloudTest Jenkins Plugin wraps the MakeAppTouchTestable commands into a
convenient set of commands that automate the instrumentation steps. Use these
commands. The MATT section is presented first, although it can be anywhere between

the first and last steps in your job as described above.

In the following sections, we will use the CloudTest Jenkins Plugin's
MakeAppTouchTestable module to make an iOS project, a compiled APP file, and
finally an IPA file, TouchTestable. The plugin's MATT forms also provide a means to

use existing MATT commands via the command line.
Using MATT on an APP (Dynamic Instrumentation for Simulator)

Use the following steps to dynamically instrument an APP file. This is typically done
before it is run on a simulator. For example, you can use this step after an Execute

Shell step using xcodebuild.

1. Add a MakeAppTouchTestable step to the job.

Build pericdically
Poll SCM

Build

Add build step -

Capture [0S Device Screen Shot
Execute Windows batch command
Execute shell

Import ClowdTest Objects

Install i0S App on Device

Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

Play Compesition

Reboot (0S Device Page generaf]
Run App in 105 Simulator
Wake up 105 Device

Save Apoly

icnnfinured

19

2. Apply MATT to the compiled APP by selecting the Input Type, iOS App Bundle

(e.g. the MATT equivalent is the appbundle parameter).

Build

Make App TouchTestable

ClaudTest Server(My CloudTest Instance

Input Type ((ios App Bundle

Input File build/Release-iphonesimulator/Stockfish.app
@ 'build/Release-iphonesimulator/Stockfish.app” doesnt match anything: "build’ exists but not *build/ Release-iphonesimulator/Stockfish.app”

1. Enter the APP name as the Input File (from the workspace root).

2. Optionally, click Advanced to display additional MATT configuration fields.
3. Save the Jenkins job.
Using MATT on an IPA (Dynamic Instrumentation for Device)

Use the following steps to dynamically instrument an IPA file. This is typically done as
the last step before it is installed on a device. For example, you can use this step after

an Execute Shell step using xcrun.

3. Add a MakeAppTouchTestable step to the job.

Build pericdically
Poll SCM

Build

Add build step *

Capture 105 Device Screen Shot
Execute Windows batch command
Execute shell

Import CloudTest Objects

Install 105 App on Device

Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

Play Composition

Reboot 105 Device Page genera]
Rum App in 105 Simulater
Wake up 105 Device

Save Apoly

Srmnfinred

20

4. Apply MATT to the compiled IPA by selecting the Input Type, IPA (e.g. the MATT

equivalent is the ipa parameter).

Build

Make App TouchTestable

CloudTest Server My CloudTest Instance

Input Type [:p,q

Input File build/Release-iphonesimulator/Stockfish.ipa
@ 'build/Release-iphonesimulator/Stockfish.ipa’ doasn't match anything: 'build" exists but not "build/Release-iphonesimulator/ Stockfish.ipa”

4. Enter the IPA name as the Input File (from the workspace root).
5. Optionally, click Advanced to display additional MATT configuration fields.

e Launch URL - Same as MATT launchurl. For example: my-app://launch

TIP: If you are specifying a custom Launch URL here, be sure to avoid spaces

and underscores, as they will cause an error.
e Back up modified files — Check this to keep backups in the project).
e Additional options - Enter any additional MATT command line parameters.

Most notably, you can use MATT to provision and code sign the dynamically
instrumented IPA file (code signing and provisioning can, of course, be done
using xcrun, which is discussed in the Execute Shell step, Building the IPA for a

Device).
Use the following MATT optional IPA parameters

o -provisioningprofile <profilepath> - Path of the Provisioning profile
to be used for building IPA file. The provisioning profile you input MUST
to be a Distribution profile.

o -signingidentity <signingidentityname> - Name of the signing
identity to be used for codesigning the application. (e.g. "iOS Distribution:

Developer Name")

o -entitlementsfile <entitlementsfilepath> - path of the

entitlements file to be used for codesigning the application

21

For more about using additional MATT parameters, use:

java sh MakeAppTouchTestable/bin/MakeAppTouchTestable -help

6. Save the Jenkins job.

Using MATT on a Project (Static Instrumentation for Simulators/Devices)

This utility is automatically downloaded by the SOASTA CloudTest Jenkins Plugin and

can be easily specified in your Jenkins job using the following steps.

7. Click Add a Build Step, and select MakeAppTouchTestable from the drop-down
list. This MakeAppTouchTestable step will always be the first step in a Static
Instrumentation workflow, but will come after the APP or IPA is built where

those files are in use on a simulator(s) or device(s).

Build pericdically
Poll SCM

Build

Add build step *

Capture 105 Device Screen Shot
Execute Windows batch command
Execute shell

Import CloudTest Objects

Install 105 App on Device

Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

Play Composition

Reboot 105 Device Page genera]
Rum App in 105 Simulater
Wake up 105 Device

Save Apoly

irmnfinred

The Make App TouchTestable form appears.

Build

Make App TouchTestabla
CloudTest Server[My CloudTest Instance

Input Type [(Project

Input File Stockfish.wcodepra)

8. Enter the Xcode project name as the Input File.

22

9. Optionally, click Advanced to display additional MATT configuration fields.

e Launch URL - Same as MATT launchurl. For example: my-app://launch

TIP: If you are specifying a custom Launch URL here, be sure to avoid spaces

and underscores, as they will cause an error.

e Target — Same as MATT target. For example: stockfish copy

Build

Make App TouchTestable
CloudTest Server [My CloudTest Instznce

Input Type [Project

Input File Stockfish.xcodeproj
Launch URL (optional)

Target (i0S only)

Back up madified files

Additionzl Dptions

e Back up modified files — Check this to keep backups in the project folder
(where xcodeproj resides).
e Additional options - Enter any additional MATT command line parameters.

For more about using additional MATT parameters, use:

java sh MakeAppTouchTestable/bin/MakeAppTouchTestable -help

10. Save the Jenkins job.

23

Build an APP or IPA using Execute Shell

In the following sections, we will build the app, and generate an IPA.

Note: If an app for simulator is also included in your Jenkins job alongside one
for a real device, it should be built and run prior to building the app for a
device (described in the following steps). This ordering is necessary to
prevent the example mobile app for a simulator from being overwritten by

the subsequent version of the app intended for the physical device.
Using the Jenkins $WORKSPACE Variable

In the Execute Shell sections below, we will build the mobile app for both a simulator
and a device using the Jenkins $WORKSPACE variable. This variable is a shortcut to

the Jenkins folder's workspace sub-folder. For example:

/Users/username/.jenkins/jobs/Stockfish Functional Tests/workspace

The Jenkins $WORKSPACE variable is used as a matter of convenience. It is not
required. When using $WORKSPACE in an Execute Shell step it is a good idea to place
it into double-quotes (e.g. "$WORKSPACE"). This is in case the path includes spaces.

For example, if the name of your job includes spaces so will your workspace.
Build the APP for Simulator (or Before Building an IPA)

The app file is a requirement for deployment to all iOS simulators and devices. For
iPhone and iPad devices, the app file is then used to generate an IPA archive for

deployment.
In order to build the app, the command line xcodebuild command is used.

1. Click Add a Build Step, and select Execute Shell from the drop-down list. Note
that after the step is created you can drag it to the correct place in the

workflow of your Jenkins job.

2. Enter the following lines in the end of the Execute Shell field (revise the paths

to match that of your own environment):

24

#Build the Stockfish app for simulator

/usr/bin/xcodebuild -sdk iphonesimulator -target "Stockfish" -project
"SWORKSPACE"/Stockfish.xcodeproj" -configuration Release clean build

Execute shell [(2)

Command #Build the Stockfish app for simulator

/usx/bin/xcodebuild ~sdk iphonesimulator -target "Stockfish" -project
“SWORKSPACE"/Stockfish.xcodeproj -configuration Release clean build

See the list of available environment variables

where:
e <sdkx> Either iphonesimulator or iphoneos.

e <target> IS the name of the target in the ".xcodeproj" file representing

your project.

Note: When building an app for a simulator, specify the SDK as an argument

(recommended).
e <project> is the name of the ".xcodeproj" file to build.

® <configuration> is the type of build. Refer to /usr/bin/xcodebuild -help

for more information.

Next Steps:

After the Stockfish.app has been successfully created, make it TouchTestable, if

that is the last step before running it on a simulator.

You can also build the Xcode project before applying MATT, in which case you
will use Add Build Step, MakeAppTouchTestable, iOS APP Bundle to make it

TouchTestable before you install to a simulator.

25

Build the IPA for a Device (Static or Dynamic)

Now, we'll add an Execute Shell step to build the IPA archive file using the Xcode
Tools command, xcrun. In the command below, we will also sign the application using
a provisioning profile. You'll need the correct provisioning profile and iPhone

Developer or iPhone Distribution developer ID to succeed here.

Building the IPA requires the built app (see above steps) and the following command

(be sure to revise the command for your own environment):

1. In the Execute Shell step, enter the following (be sure to revise this example to

use your own paths).

#Build the IPA archive (only required for use with physical i0S devices)

/usr/bin/xcrun -sdk iphoneos PackageApplication -v

"SWORKSPACE" /build/Release-iphoneos/Stockfish.app -o

"SWORKSPACE" /build/Release-iphoneos/Stockfish.ipa --sign "iPhone
Distribution: Username" --embed
"/Users/username/Library/MobileDevice/Provisioning Profiles/20454FCB-7B8C-
4996-BDD3-E660DB279261 .mobileprovision"

Execute shell

fusr/bin/xcrun -sdk iphoneos PackageApplication -v "$WORKSPACE"/build/Release-iphoneos/Stockfish.app -o
"S$WORKSPACE" /build/Release-iphoneos/Stockfish.ipa --sign "iPhone Developer: James CARDNER" --embed
"/Users/jgardner/Library/MobileDevice/Provisioning Profiles/98780978-5A4A~4918~BCD2~

52F4FP4046E4F .mobileprovision”

See the list of avaiiable environment variables

where:
e <sdk> in this case the SDK to use is 'iphoneos'.

e <output> Of -o. The output path and filename are where the IPA archive

is created.

e <sign> with the Code Signing Identity found in the Xcode Organizer's
Teams node. When deploying to a device, the iPhone Distribution
identity is generally used (required for App Store submissions, etc.). You
can also open your Xcode project and navigate to the Build Settings tab,

Code Signing section to view the Code Signing Identity.

26

Note: In general, you want one and only one provisioning profile each for the
iPhone Developer and iPhone Distribution identities. Apple warns against
multiple provisioning profiles, which is known to cause Xcode conflicts,
and which may in some cases prevent your Jenkins job from succeeding. If
you run into Code Signing problems it may be necessary to resolve your

setup before continuing. Refer to the Best Practices for Maintaining

Certificates and Provisioning Profiles article in the iOS Developer Library

for more information.

e <embed> the file name and extension of the mobile provision to use. The
provisioning profiles are found in the Xcode Organizer, Library,
Provisioning Profiles node. Select the profile in the Organizer window's
Library section and then right-click to choose "Reveal Profile in Finder."
Specify the path and file name with extension in your xcrun command.
You can also locate the profile using Finder's Go To Folder command

using: "~/Library/MobileDevice/Provisioning Profiles".

Note: In some cases, usually on the occasion of an Xcode update, users have

encountered the following error while using xcrun to sign the app:

/var/folders/d9/swbmcb4911zcnl2kklrlbhx80000gn/T/xzFYPWzzYi/Payl
oad/Stockfish.app: object file format unrecognized, invalid, or
unsuitable

If this error is encountered, try adding the following symbolic link (it

should only be necessary to do so once):

export CODESIGN ALLOCATE="/Applications/Xcode.app/Contents/Devel
oper/usr/bin/codesign _allocate"

Run /usr/bin/xcrun -help for more information about this Xcode command-line
utility.
2. Click Apply on the Job page.

Once the IPA archive has been created, we are ready to deploy our mobile app to any

tethered, provisioned iPad or iPhone.

Next Steps:

27

http://developer.apple.com/library/ios/#documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificatesandProvisioningAssets/MaintainingCertificatesandProvisioningAssets.html
http://developer.apple.com/library/ios/#documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificatesandProvisioningAssets/MaintainingCertificatesandProvisioningAssets.html

After the Stockfish.ipa has been successfully created, make it TouchTestable,
before installing it on a device.

If the IPA was static instrumented many steps before now, you are ready to
install it to a device.

28

Install to a Simulator or Device

In the following two sections, we will use the CloudTest Jenkins Plugin, Run App in
iIOS Simulator and Install iOS App on Device commands to deploy the newly

TouchTestable apps.

TIP: In Jenkins jobs where an app will be generated for BOTH a simulator and
a physical device, it is necessary to generate and run the simulator app
first to prevent it from being overwritten by the subsequent version of the

app intended for the physical iOS device.
Run the App File on a Simulator

Once an App file has been created, and been made TouchTestable, whether by the
static project or dynamic instrumentation using the iOS App Bundle command, use

the following steps to run it on a simulator.

1. Click Add a Build Step, and select Execute Shell from the drop-down list. Note
that after the step is created you can drag it to the correct place in the

workflow of your Jenkins job.

2. Select Run app in iOS Simulator.

Add build step w

rs

Install 10S App on Device
Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

Play Composition

Reboot i0S Device

Run App in [0S Simulator
Wake up 105 Device

b d

The Run App in iOS Simulator form appears.

Run App in iOS Simulator
App Directory (2]

° App directory is required.

29

3. Enter the app folder path. In this case, use build/Release-

iphoneos/Stockfish.app.

Run App in i0S Simulator
App Directory build/Release-iphoneos/Stockfish.app

TIP: The four types possible here are Release-iphoneos, Release-
iphonesimulator, Debug-iphoneos, Debug-iphonesimulator.
4. Click Apply on the Job page.
Next Steps:
e Once your mobile app is on the Simulator, the Play Composition step is added.
Install the IPA on a Device (Static or Dynamic)

Once an IPA file has been built, make it TouchTestable using CloudTest Jenkins Plugin,
MATT, IPA. After which, you can use the following CloudTest Plugin steps to install the

TouchTestable IPA onto a physical device.

1. Click "Add Build Step”. Note that after the step is created you can drag it to the

correct place in the workflow of your Jenkins job.

2. Select Install iOS App on Device.

Add build step «

-

Capture 105 Device Screen Shot
Execute Windows batch command
Execute shell

Import CloudTest Objects

Install 105 App on Device

Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

The Install App in iOS Device form appears.

30

Install iOS App on Device

IPA file | crackfishchess-ios/build/Release-iphoneos/Stockfish.ipa

@ IPA file is required.

3. Enter the app folder path. For example, stockfishchess-ios/build/Release-

iphoneos/Stockfish. ipa.

Note: The alert indicating that the IPA path doesn't match appears in those
cases where the directory doesn't exist before the build actually happens.
Since this job builds before installing the app, the folder will exist when

the Install iOS App on Device step runs, and the alert can be ignored.
4. Click Apply on the Job page.

5. Save the Jenkins job.
Next Steps:

e Once your mobile app is on the Simulator, the Play Composition step is added.

31

TouchTest Agent for iOS 9+

Those using iOS 9 or later will need to use the TouchTest Agent app. This app

facilitates continuous integration on iOS 9 or later devices.

There are two ways to get the TouchTest Agent app.

Get the TouchTest Agent IPA by Running MakeAppTouchTestable Utility

Use the following command:

sh MakeAppTouchTestable/bin/MakeAppTouchTestable -touchtestagent -
output ~/tmp -provisioningprofile
~/Library/MobileDevice/Provisioning\
Profiles/example.mobileprovision -signingidentity "My Identity" -
appidprefix DW4AETSG5SA

Parameters:
e -provisioningprofile <profilepath> - Path of the Provisioning profile

to be used for building IPA file. The provisioning profile you input MUST to be

a Distribution profile.

e -signingidentity <signingidentityname> - Name of the signing
identity to be used for codesigning the application. (e.g. "iOS Distribution:

Developer Name")

e -appidprefix <Application Identifier Prefix> - Application

Identifier Prefix of the Provisioning Profile (or Team Identifier).

32

Get the TouchTest Agent Project from Resources Page

Click TouchTest Agent iOS Project under TouchTest Resources page, Dowloads.
Once this downloads, open the TouchTest Agent iOS Project in Xcode, select your

device, and hit play.

Downloads

@ Make App TouchTestable Utility
@ @ TouchTest Web iOS Project
Resources Clggrcll‘:;;nk Support @ iOS App Installer Utilitv
TouchTest Agent iOS Project
> LI 1ouchiest Agent ANQroia app
[TouchTest Web Android app

Note: For iOS 9 or later, any time your device launches a new application (first
time only), you need to tap Open twice; first, to allow TouchTest Agent to
open the new app and second, to allow the app to open TouchTest Agent

at the end of the session.

These actions will resemble the pop-ups below:

"Stockfish” wants to open
“TouchTest Agent” wants to "TouchTest Agent”

open “Stockfish”

Open Cancel

33

Playing the Composition

Finally, we will add a build step using the CloudTest Jenkins Plugin, Play Composition

command.

1. Add a build step and select Play Composition from the drop down.

Add build step w

Execute shell

Impoert CloudTest Objects
Install 10S App on Device
Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

Play Composition

Reboot 105 Device

-

TIP: If you are adding more than one composition, click the down arrow to

expand the entry field before entering the first composition path.

Play Composition
Composition(s)

2. Enter each composition to play using its full SOASTA Repository path (shown

below).

Play Composition

Composition(s) [;spaSTA Tutorial/Advanced/Composition for Fools Mate Clip
JSOASTA Tutorial/Advanced/Compaosition for King's Gambit Clip

34

Note: Ensure that you have dragged all the steps into the right order before
building. The order should be the same as in this tutorial, but may vary

slightly depending on whether you're using devices, simulators, or both.

3. Click Save to complete the Jenkins job.

Building the Project

1. To build the project, click the "Build Now" link.

Jenkins |
\
Jenkins Stockfish Functional Tests

4% Back to Dashboard
i, Status

= Changes

h._r Workspace

3_2) Build Now e

@ Delete Project

& Configure

The build will start. After a short delay, you should see a progress bar appear on the
left side of the page. Click this progress bar to watch the build process "live" in the

Console view.
You should see the following happen:

a. Jenkins checks out the source code from Git, and runs the
MakeAppTouchTestable utility.

b. Jenkins performs whatever Execute Shell steps you've placed to invoke Xcode
to build an app for Simulator, an app and IPA for a physical device, or both.
The Run steps for either a device or simulator run consecutively after the shell

that pertains to either one.

c. Jenkins plays the CloudTest compositions using SCommand. On the tethered

device, you should see the Stockfish app launch and run through the test

35

steps. When the test finishes, Stockfish will exit, and the SOASTA TouchTest

Agent page will re-open.

36

Inspecting Test Results in Jenkins

For a successful test with no failures, the Test Result page merely lists the All Tests

section with the given package (i.e. in this case the package equates to a CloudTest
repository folder).

Jenkins SOASTA_Doc_Test 3 #11 Test Results

* Back to Project

Test Result

0 failures (-1)

C?Iwit Status
“;’ Changes
H Console Qutput

-:; Edit Build Information

[History All Tests

Package
* conioe s Soasta.tutorial

B Next Build

e Clicking the Package link opens the subsequent CloudTest folder.

L Test Results Soasta.tutorial

Test Result : Soasta.tutorial

0 failures (-1}

All Tests

Class

advanced

37

Things get more interesting when an error in the test occurs. The subsequent
SCommand output is displayed (in text) on the Jenkins Test Result page (as discussed

above).

13 Test Results

Test Result

1 failures (£0)

All Failed Tests

Test Name

=»> Soasta.tutorial.advanced.Composition for Fool's Mate Clip

All Tests

Package

Soasta.tutorial

In this case, the All Failed Tests section is added with the name of the test listed with
a link to more of the SCommand details. Clicking the link under the Test Name
section where the composition is named displays an Error detail page (for the given

error).

Failed

Soasta.tutorial.advanced.Composition for Fool's Mate Clip (from Soasta.tutorial.advanced.Composition for Fool's Mate Clip)

8 Validation "verifyElementText” failed. Expected: "Click here", validation parse error: The locator "text=0K" did not match any elements.

Click here to see the SOASTA CloudTest dashboard for this test

Error Message

A non-fatal error occcurred. (Tester iPad) (Band "Band 1" Track "Track 1" Clip "Fool's Mate Clip 1" Target "Tester iPad Stockfish")

In the error above a validation in the Composition for Fool's Mate has failed.

38

1. To view this error in the CloudTest, Result Details dashboard, click the plugin
link provided (i.e. "Click here to see the SOASTA CloudTest dashboard for this

test."

After the plugin link is clicked, enter CloudTest credentials whenever required.

Failed

Soasta.tutorial.advanced.Composition for Fool's Mate Clip (from Soasta.tutorial.advanced.Composition for Fool's Mate Clip)

Q\"'N’dﬁ on *verifyElementText” failed. Expected: "Click here", validation parse eric

Click here to hide the SOASTA CloudTest dashboard

SCASTA -
TouchTlest”

SOASTA_DOC

Remember my User Name

e After credentials are entered, the dashboard tab opens, displays the test result,

and jumps to the relevant error.

39

Regression

Soasta.tutorial.advanced.Composition for Fool's Mate Clip (from Soasta.tutorial.advanced.Composition for Fool's Mate Clip)
Failing for the past 1 build (Since

Took
[#fadd desq

Q\Jalida:wo" "werifyElementText” failed. Expected: "Click here", validaticn parse error: The locator "text=0K" did not match any elements.

Click here to hide the SOASTA CloudTest dashboard

CloudTest®

/ = ce
() ma) (Opar) & rosss \

Result Details Dashboard 1 |+

Result Detalls
? Element Status: | s+ || Al + | Element Type: | Is 3 |[Al % | Operation:| 1s 4 |[Al %
¥ B Composition for Foal's Mate Clip [5) 3 completed - WithErrors = Totalc 15 Total M and Actions: 10 & Jump to now
¥ £ Band 1
¥ W Track 1

Soasta.tutorial » Advanced » Composition for Fool's Mate Clip

surren

General

Error(s): €3 Validation verifyElementText falled
Expected: "Click here", validation parse error: The locator "text=0K" did not match any elements

Name: Spasta.tutorial/Advanced/Composition for Fool's Mate Clip

From here, the Result Details dashboard can be navigated as within any CloudTest

dashboard. Refer to Result Details Dashboard for a quick review of Result Details

features.

40

http://cloudlink.soasta.com/t5/Knowledge-Base/Result-Details-Dashboard/ba-p/710

Appendix I: Waking Up an iOS Device

The SOASTA CloudTest Jenkins Plugin includes the ability to wake up a device. This
technique is useful in mobile device test labs as an energy saving measure and can be
used in coordination with the ability to reboot a device. Note that the TouchTest
Agent should be the Safari page running on the sleeping device for test execution to

succeed.

1. Add a build step using Wake Up iOS Device. Note that after the step is created

you can drag it to the correct place in the workflow of your Jenkins job.

Add build step =

Fs

Invoke Ant

Inwoke top-level Maven targets
Make App TouchTestable

Play Composition

Reboot i0S Device

Run App in [0S Simulator
Wake up (05 Device

b

The Wake up iOS Device form appears. This command will wake up any device
tethered on the Mac where the Jenkins job runs (for example on a slave node

assigned to the job).

Wake up iDS Device

Note: Ensure that the device(s) do not have passcodes in effect.

2. Drag the build step into the correct position. In general, at the beginning of a

job and before Xcode build steps.

3. Click Apply on the Job page.

41

42

Appendix ll: Rebooting an iOS Device

The SOASTA CloudTest Jenkins Plugin includes the ability to reboot a device as part
of test lab setup. This technique is useful in mobile device test labs to refresh the iOS

device state, which can be subject to degradation over time.

1. Add a build step using Reboot iOS Device. Note that after the step is created

you can drag it to the correct place in the workflow of your Jenkins job.

Add build step

Fy

Install 10S App on Device
Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

Play Compasition

Reboot I0S Device

Run App in Q5 Simulatar
Wake up 105 Device

The Reboot iOS Device form appears. This command will reboot any device tethered
on the Mac where the Jenkins job runs (for example on a slave node assigned to the
job).

Reboot iDS Device

Note: Ensure that the device(s) do not have passcodes in effect.

2. Drag the build step into the correct position. In general, at the beginning of a

job and before Xcode build steps.

3. Click Apply on the Job page.

43

44

Appendix lll: Importing Source Controlled SOASTA XML

The SOASTA CloudTest Jenkins Plugin includes the ability to import SOASTA objects
such as test clips from exported XML. This technique is useful in test environments

where more than one tester is working as part of a team.

For example, a team might have access to the following:

e 1 CloudTest Pro environment being used for CI, with Jenkins pointed at it.
e 1 version control system.
e 3 CloudTest Lite users, working on their own tests, do the following:
o The CloudTest Lite users export their compositions and clips using the non-
zipped XML, and check them into SVN, on a regular basis.

o The Jenkins job checks them out from SVN, imports the XML into the
CloudTest Pro environment, and then runs the compositions on that same
environment. The exported objects can include dependent objects but the
export should be in XML format and not zipped. Refer to Export and Import
SOASTA Obijects for steps.

Importing CloudTest Objects

1. Export the object(s) to import and check them into the repository that also has

the Xcode project.

2. Add a build step using Import CloudTest Objects. Note that after the step is

created you can drag it to the correct place in the workflow of your Jenkins job.

Add build step +

rs

Capture [0S Device Screen Shot
Execute Windows batch command
Execute shell

Import ClowdTest Objects

Install 105 App on Device

Invoke Ant

Invoke top-level Maven targets
Make App TouchTestable

L d

The Import CloudTest Objects form appears. If you will be exporting more than one

XML file click the down arrow to expand the form before proceeding.

45

http://cloudlink.soasta.com/t5/Knowledge-Base/Export-and-Import-SOASTA-Objects/ba-p/15365
http://cloudlink.soasta.com/t5/Knowledge-Base/Export-and-Import-SOASTA-Objects/ba-p/15365

Import CloudTest Objects

File(s) to import

Conflict resolution mode | papjace the existing objectis)

4. Specify the file name of each XML file to import (one per line).

Import CloudTest Objects

File(s) to import foolsmate.xml
kinggambhit.xmil

Conflict resolution mode Replace the existing ohject(s)

TIP: You can also use wildcards here. For example, if the CloudTest objects

were checked into a "testobjects" folder, then entering
testobjects/*.xml here would import them all.

5. For this scenario, accept the default conflict resolution mode, which is "Replace

the existing object(s)."

6. Drag the build step into the correct position. In general, before any Play

Composition steps.

7. Click Apply on the Job page.

46

Appendix IV: Jenkins Plugin, Transaction Thresholds

The Transaction Threshold command—which was made available in the SOASTA
CloudTest Plugin, version 2.17—provides users with the ability to automate the validation

of Transactions in a composition using CloudTest metrics, such as Average Response
Time or Errors per Transaction.

For more details, please visit Setting Transaction Thresholds in Jenkins.

47

http://cloudlink.soasta.com/t5/CloudTest-Knowledge-Base/Setting-Transaction-Thresholds-in-Jenkins/ta-p/44611

48

SOASTA, Inc.
444 Castro St.
Mountain View, CA 94041
866.344.8766

http://www.soasta.com

49

http://www.soasta.com/

