SCASTA

ouchTest™ OpenGL Tutorial

SOASTA TouchTest™ OpenGL Tutorial

©2015, SOASTA, Inc. All rights reserved.

The names of actual companies and products mentioned herein may be the trademarks
of their respective companies.

This document is for informational purposes only. SOASTA makes no warranties, express
or implied, as to the information contained within this document

Table of Contents

About This Tutorial........ccciiimmiiiiiirr e n s s e s mm s s e nmns s snmnsssnnnns 1
=T =T LT 1T = 2
MakeApp TouchTestable Uility ...t r e e s e s s e mm e e e e 2
iLabyrinth SOUrce Project......cccummmmmmmmmmmmmmsmmssmmssnssssssnssnnsnnnns 3
Using the MakeAppTouchTestable Utilitycccccccciiiinmmmmmesimmmmmmssiimnmnnssssnsnssssssennnnnas 4
Inspecting the TouchTestable Xcode Project..........cccoimmmnniiciinimnmmsccsssnnsnssssssssssssssnsnnnnes 6
Inspecting the Mobile App in CloOUdTEST®cuuiiiiiiiiiiiieieeee e 7
Launching the TouchTestable App from Xcodecccciimmmiiiimmniniminne s 9
Registering Your Device to Use TouchTest™iiiiinimmcisnimscessnnscessssssssssssssssssssnsnnnns 10
Approving a Mobile Device (Administrator Only)ccccccccccccnnnnnnnnnnnnnnnnsnnnnnnnsnnsssnnnnnnnnnnnnes 14
Associating Mobile Apps With @ DeViICe........ccuuiiiissiisssissnnssnnsnns 16
Record a TouchTest™ Clip using iLabyrinth.............ccoiiiiiiiiie s 17
Adding a Target-Level OUTPULccceeeccciiii e se s s s ss e e e e ss s s s e s e s nnmmen s s e s e s s nmmmmmnssssnnnnns 19
Turn on Screenshot Validation at the Target Level........ s 22
Examine the outputVieWHiIerarchy ... 22
Exposing the App Internal State using TouchTest......cccccccriiiiimccrcrrimec e 24
Creating the TOUChTESTHEIPEI.Neeiiiiiiee e 24
Creating the TouchTestHelper.m File..........ueiiiiiii e 25

Add the TouchTestHelper Files to the Automation Target.........cccoveeviiiiieiiecc e 27
Managing Animations and Map Levels in iLabyrinth........eeemeeeeiiiniiiiinnneeeeeeeeeees 30
Revising iLabyrinth.m to Access Map Levels........cccccisieeeecccss e e e s s e s 30
Revising UDGameLayer.m to Turn off Water Animation........ccccuummmmmnmmmmmmmmmmsssssssssssssssssssssnas 31
Adding App Internal States to a Test........cccccciiirccrr e e 31
Adding Outputs for AppinternalState at the Target Level ... 32
Adding a Wait for Idle at the Target Level.........cciiiiiniiinninnsinnssssssssssssssssnsssnsssnnsnnnnnes 32
Record a Second Clip with Screenshot Validation ... 34
Adding a Post-Wait for a Scene Change..........ccuiinssnns 35
Examining Image Validations using verifyScreenshot............cccoorcccirnnnmeccccessssseresnneees 38
Improving Test Clip Readabilitycccciiiiiimiiiiriiiiissas 39
Viewing App Internal States in @ Result..........cccccrriirriinninnnninnsnnsssssssssssssssssssssssssnssnnnnnes 41

Inspecting Result Detailscccoemiiiiiiiiinec s ss s s s nm s s e e s nnmnas 41
Appendix: Manually Adding TouchTest™ to the Xcode Project......ccccceciiiimmiciiinneecens 1
Adding a Mobile App to CloudTest® Manuallycooocumiieiiriiiieiireeee e 11

SCASTA

About This Tutorial

Unlike other testing solutions that only test results displayed or actions taken at the user-
interface layer, CloudTest® Mobile can validate tests using app internal values, and
conditionally wait for internal application state changes. For mobile apps that do not
show internal app states, such as those based on the OpenGL game engine, Cocos2d,
additional techniques can be employed in the Xcode project to expose them. These
techniques are described in the following sections.

This tutorial uses iLabyrinth, an OpenGL open-source application, as an example of
exposing values where those values are not already exposed. The techniques used here
can also be used to expose any application internal state to which the developer has
rights. They are equally applicable to analogous iOS apps.

For example, in a Calendar application, one might choose not only to validate at the
user-interface level but using internal values that are exposed using this tutorial.

The SOASTA TouchTest OpenGL Tutorial is intended as a “deep” sequel to the SOASTA
TouchTest Tutorial, which provides an introduction to basic CloudTest Mobile concepts
and best practices.

* Additional material pertinent to developers may be found in the SOASTA
TouchTest Developer Guide, as well as in the SOASTA TouchTest Advanced
Tutorial, although neither are necessary to begin this tutorial.

http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Developer_Guide.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Developer_Guide.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Developer_Guide.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Developer_Guide.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf
http://cdn.soasta.com/productresource/download/SOASTA_TouchTest_Advanced_Tutorial.pdf

Prerequisites

This tutorial requires the latest version of the MakeAppTouchTestable utility, available
from the CloudTest Welcome page, as well as an Xcode project to extend using the
techniques enclosed.

MakeApp TouchTestable Utility

The following prerequisites should be performed by a developer or Mobile Device
Administrator:

1. Download and unarchive the CloudTest Make App TouchTestable Utility from the
Central > Welcome page, Downloads section.

Downloads

Conductor for Mac OS X

Qthar Oparating Systems...

W/

\& Make App TouchTestable Utility

hr_, Deploy TouchTestable App Utility
{&@ Appcelerator - TouchTest Module
s Browser Recorder Firefox Add-on

l!l CloudTest Command-Line Client

i3 CloudTest Jenkins/Hudson Plugin

This archive contains the following:

Name
| | MakeAppTouchTestable

L] lib
= MakeAppTouchTestable.jar

.| TouchTestDriver
Automation.xcscheme

Note: It is not necessary to open any of the contents after unarchiving.

* MakeAppTouchTestable.jar utility is the script that will make the necessary
project modifications and create a mobile app in CloudTest®

* The TouchTestDriver folder. The contents of this folder will be automatically
copied to your project

iLabyrinth Source Project

While this tutorial uses iLabyrinth, the another OpenGl (or other apps with undisclosed
app internal states) can be substituted.

1. Download and unarchive the Xcode Project for the iLabyrinth application. This can
be done using either of the following methods:

* From Terminal, use:

git clone https://github.com/ud7/ilLabyrinth.git

* In the browser, download the archive from:

https://github.com/ud7/iLabyrinth

https://github.com/ud7/iLabyrinth.git
https://github.com/ud7/iLabyrinth.git
https://github.com/ud7/iLabyrinth
https://github.com/ud7/iLabyrinth

Using the MakeAppTouchTestable Utility

TouchTest™ includes the MakeAppTouchTestable, which will automatically add the
necessary components to an existing Xcode project to deploy TouchTest™, and
additionally, the utility will also create the Mobile App entry in CloudTest® .

TIP: If you’d like to perform these Xcode project customization steps
manually, refer to the “Appendix: Manually Adding TouchTest™ to the
Xcode Project” included at the end of this tutorial.

SOASTA highly recommends that you create a new Xcode target for use with

TouchTest. This allows you to easily build two versions of your app: a testable version
that is linked with TouchTest Driver, and a production-ready version that does not include
any TouchTest™ functionality.

1. Open the iLabyrinth Xcode project file.

The project’s components prior to running the utility are shown below.
0
v Classes
I Support

I Scenes A

h| iLabyrinth.h
A i inth-Li
w) iLabyrinth.m v iLabyrinth-Lite

h| UDAppDelegate.h
m| UDAppDelegate.m
Other Sources
Resources
Resources-iPad
Resources-Lite
Frameworks
Products

1 iLabyrinth

YyYVvYy9vy9yYY9YyYY

Note that out-of-the-box there is one target, iLabyrinth, defined in this project. We will
now duplicate that target for use with TouchTest.

2. Right-click the iLabyrinth target and choose “Duplicate”.

T @ A = » B |::;; < > | [iLabyrinth
q PROJECT Summary
; iLabyrinth Basic | Combine d)
FARGETS Setting
(X : —_— Debua
iLabyrinth-Li -
Delete tlude
Project Editor Help >
[Release
Code Signing

Code Signing Entitlements
Debug

3. Xcode will create a new target called iLabyrinth copy.

4. Open a Terminal window and navigate to the location where the ZIP was
unarchived.

For example, cd ~/Documents/Demo/MakeAppTouchTestable.

5. From the MakeAppTouchTestable folder, run:

sh MakeAppTouchTestable/bin/MakeAppTouchtestable -project <Xcode project
directory> -target <target name> -url <CloudTest URL> -username
<CloudTest user name> -password <CloudTest password>

where:

®* <Xcode project file> is the path to the “.xcodeproj” file representing your
project

* <target name> iS the name of the Xcode target you would like to modify

Here is a complete example:

sh MakeAppTouchTestable/bin/MakeAppTouchtestable -project ~/Documents/
Demo/iLabyrinth/i0OS/iLabyrinth.xcodeproj” -target “iLabyrinth copy” -url
http://ctmobile.soasta.com/concerto -username SOASTA DOC -password secret

TIP: In your own projects if the MakeAppTouchTestable utility is not able to
find a main file or finds multiple main files for some reason, it will be
necessary to add the parameter
—mainfile as shown below in order to provide the correct path to the
project’s main file:

sh MakeAppTouchTestable/bin/MakeAppTouchtestable -project ~/
Documents/Demo/iLabyrinth/iLabyrinth.xcodeproj -target

"iLabyrinth copy" -url http://ctmobile.socasta.com/concerto -

username bob@acme.com -password secret —mainfile <Main file
project directory>/main.m

For example, the <Main file project directory might be:

http://ctmobile.soasta.com/concerto
http://ctmobile.soasta.com/concerto
mailto:bob@acme.com
mailto:bob@acme.com

/Users/<username>/Desktop/Project/Classes/main.m

6. MakeAppTouchTestable will configure your project, and create a new Mobile App
object in the CloudTest server repository. The Mobile App object created will have
the auto-created URL Scheme in its Launch URL field.

TIP:

In this basic example, we do not use MATT's launchurl flag to create a launch

URL. In which case, MakeAppTouchTestable will auto-generate the URL for us. If
the flag is used, be sure to avoid spaces and underscores as they will cause an

error.

You will see a message similar to the following:

Mobile App Object representing your Application "iLabyrinth" has been created
in CloudTest Repository.

Inspecting the TouchTestable Xcode Project

Now that the specified Xcode project has been modified, let’s take a look at it. In the
screenshot below, note that a new project folder now exists for the TouchTest Driver.

L]
I Classes
= Other Sources
I Resources
I Resources-iPad
I Resources-Lite
I Frameworks
I Products
r, iLabyrinth copy-Info.plist

v

TouchTestDriver

= e [iLabyrinth
; iLabyrinth
oA iLabyrinth
oA iLabyrinth-Lite

In addition, click the Scheme drop-down in the Xcode toolbar and note the entre with the
suffixes “~-TouchTest”. Select “iLabyrinth-copy-TouchTest” and then the tethered device

or simulator.

b o o

A

iLabyrinth copy

4 > | \‘v‘ iLab copv-TouchTest f iamesaardner’s iP
=) iPad 5.1 Simulator
| Edit Scheme... iPhone 5.1 Simulator
L New Scheme...
| ma | = Manage Schemes... More Simulators...
Lﬂ ' PROJECT ‘
; iLabyrinth iOS Application Target

Inspecting the Mobile App in CloudTest®

In the steps above at the end of each run of the MakeAppTouchTestable.jar we were
notified that the “Mobile App Object” had been created in the CloudTest® Repository.

TIP: This mobile app will appear in the Choose Device Agent and Mobile App
box whenever end-users start a mobile app recording. Selecting which
mobile app to launch on which test devices is a crucial end-user step.

1. Optionally, verify that the Mobile App has been added by logging into CloudTest®
and looking for its entry in the Central > Mobile Apps list. For example, in the
screenshot below the iLabyrinth mobile app appears as expected.

Gl L Lo (X [(=)

4 Welcome Name

& compositions S iLabyrinth

& ciips % KitchenSink
(8) Recordings (. SOASTADemo

B3 stockfish
u Touches_1

B)) Device Acents

2. Double-click the iLabyrinth mobile app to inspect its details.
The Mobile App detail form appears.

* All of the fields shown were populated from the Xcode project, with the
exception of Supported Device Type and Minimum OS Version.

* The default Supported Device Type is Universal (e.g. both iPhone and iPad).
Change it to be iPhone- or iPad-specific, if desired.

Name iLabyrinth
Description

Version 3.2

0s i0S

Minimum OS Version 5.0
Supported Device Type | Universal
Minimum Device Version

Launch URL soasta-mobile-test-fB3d0abe-feda-4975-8aed-c87d515844de://

iLabyrinth_icon.png =
lcon
Import

Note: The Launch URL here must match the URL Types section, URL Schemes
entry for iLabyrinth (not including the “: //” syntax shown in the Mobile
App detail above).

* The default Minimum OS Version supported in TouchTest™ beta is iOS 5.0.

Launching the TouchTestable App from Xcode

Using the new schemes that were added to your Xcode project by the
MakeAppTouchTestable utility, you can now easily:

* Deploy the TouchTestable app to an iOS device or simulator.
* Prepare the iOS device for TouchTest™ recording or playback.
* Use the Xcode debugger to debug your app while a test is running.

1. To deploy and run the TouchTestable app, select the “-TouchTest” scheme from
the Xcode Run drop-down (i.e. “iLabyrinth copy-TouchTest”), and then select
either a physically-connected iOS device or a built-in Simulator for the given
device (i.e. iPad 5.1 Simulator).

2. Click the Run button after making your selection.

P 66 -
— ,— iLabyrinth copy >
(™) (iLabyrinth copy-TouchTest » ¥ jamesgardner’s iPhone

RuniciStop iPad 5.1 Simulator

| Edit Scheme... iPhone 5.1 Simulator ;
L New Scheme...
| Bm | Manage Schemes... More Simulators...
E.= =2 {) S—
D] — ' PROJECT
: iLabyrinth iOS Application Target

Once the app finishes building, it is deployed on the device, and the TouchTest Agent
page will appear in Safari. At this point, the device is ready to start recording or
playback.

Registering Your Device to Use TouchTest™

The TouchTest™ Agent is responsible for launching the apps that are being tested. It is a
web application that is served from the CloudTest server and runs in mobile Safari on
iOS devices. Otherwise, to get started browse to the TouchTest Agent URL on the mobile
device and perform the one-time registration steps to enable your device for use with
TouchTest.

TIP: If you clear your cookies on the given mobile device after registration,
you may need to register your device again so that TouchTest™ can
recognize it. This does not consume an additional license.

1. On the mobile device or Simulator, launch Safari and point it to:

http://ctmobile.soasta.com/concerto/touchtest

The following screen appears.
TouchTest™ Agent
by SOASTA
P

Note: If you're using a Simulator, use the "Tap here..." link if it appears. This link
will appear below the Login button in all configurations that require it.

2. Login using your SOASTA CloudTest user name and password.

10

http://ctmobile.soasta.com/concerto/touchtest
http://ctmobile.soasta.com/concerto/touchtest

If the device is not registered, the Register Device page below appears.

Note: If you clear your cookies, you may need to register your device again so
that TouchTest™ can recognize it. This does not consume an additional
license.

ToinichTeact™ Acaant
by SOASTA

This device needs to be registered and approved before it can access CloudTest.

Register Device

Why is this required?

The Unique Device Identifier (UDID) will be used to register the mobile device for use
with TouchTest™.

3. Click the Register Device button to continue.

a. First, the Install Profile screen appears. Click the Install button to proceed.

S =

Cancel Install Profile

TouchTest Device...
SOASTA.com

unsigned (I

Description This profile will be used to find
your device's UDID and help
registration of your device for
SOASTA TouchTest.

Received Feb 13, 2012

Contains Device enrollment challenge

More Details >

11

b. The Unsigned Profile alert appears to indicate that mobile device settings
will be changed. Click Install Now to proceed.

Unsigned

Unsigned Profile

Installing this profile will change
settings on your iPod.

S ————,———
Cancel Install Now

c. If a passcode is in effect on the mobile device, an additional prompt will
appear to authorize the profile installation.

12

4. When prompted, give the TouchTest Agent a name. For example Tester iPad. Note
that this name will be used throughout the product to refer to this device. Once
entered the device name can only be changed by an Administrator.

5. Once this name is entered, click Submit for administrator approval.

TouchTest™ Agent

by SOASTA

Submit for Administrator approval

Once the request for Administrator approval has been made, the TouchTest Agent will
continue to poll CloudTest for approval.

Note: It is not necessary to keep the TouchTest Agent running while this
approval is pending. The TouchTest Agent will resume polling for its
approval once restarted.

If your device is approved by the Mobile Device Administrator, the Connected page will
appear the first time TouchTest™ is launched in Safari on the approved device. On
subsequent launches click Login to Connect and Logout to Disconnect.

13

TouchTest™ Agent
by SOASTA
P\

® Connected
Dev Agent Nam
Tutorial iPad

CloudTest URL

http://demo.soasta.com:80/concerto

tutorial_user
Build
Unknown

Approving a Mobile Device (Administrator Only)

The TouchTest™ Mobile Device Administrator has the responsibility to approve or reject
the devices attempting to join testing. Administrators will use the following steps to
approve/reject the devices attempting to join.

1. Login as the user with mobile device administrative rights.
2. Click Central > Device Agents

i_\ Welcome
£ compositions
@ Clips

(8) Recordings
(I8 Mobile Apps

[J Device Agents

(&) Targets
& Sscripts
:i| Seed Data

When you do so, the Device Agents list displays those devices in queue by name.
Additionally, the model (iOS device type), OS (iOS version), and current status of the
TouchTest™ agents are displayed in the list columns.

14

f Welcome
E= Compositions
& cips
@) Recordings
{8 Mobile Apps
(@) Targets
&) scripts
& seed Data
=1 Global Property Lists
@ Session Templates
|2 Results
] Dashboards
& Report Templates
¥ Library
(g Library
g My ltems
= Images
“Y Drafts
¥ Settings
&> Account
¥ Server Resources
g Locations
& servers
¥ Monitoring
@ Conductors
g.!f Monitoring Server Groups
B Monitors
& External Data Sources

7 Activity

Name

B) JAG-iPad2
|B) Tester iPad
|B) Tester iPhone

Model os Status

iPad 2 &#i0s5.0.1 @ Pending Approval approve reject
iPad1,1 %i0S50.1 @ Pending Approval approve reject
iPhone4,1 & i0s5.0.1 @ Pending Approval approve reject

‘You may authorize up to 100 devices. Once a device is authorized, it can only be removed by SOASTA. You have 94 device registrations remaining.
General | Mobile Apps | Dependencies | ad 2 =

Build Name:
Owner:
Created:
Last modified:
Description:

Tester iPad UUID: 284433b293ec39b71e07df2b404a2cfcd8E8180f
Tester
02/22/2012 8:28 pm
02/22/2012 8:28 pm

Those devices that have the status Pending Approval need administrative attention:

3. Click Approve to complete adding a device and Reject to deny its access.

Note: CloudTest Lite/TouchTest Lite users may approve a single device only
and that device cannot be removed. Approval should only be performed
on the intended single device.

15

Associating Mobile Apps with a Device

Once a device is approved, use the following steps to assign one or more mobile apps to
that device.

1. In Central > Device Agents, select the mobile device.

leale) e L) (o) (i) (sns)

f Welcome Name
£ compositions B) ipad-tester100
& cips |B))) SOASTADOC iPhone

B))) SOASTADOC Simulator
B)) Tester iPad

'@ Recordings
VI8 Mobile Apps
B evice Agents
(&) Targets

2. In the lower panel, click the Mobile Apps tab. If necessary, use the Maximize
button to increase the workspace.

4 Welcome Name
£ compositions |B)) SOASTADOC iPhone

& cips Ywnéyamnézeq;mmwm.Omeamuamw,nmm

@) Recordings

/ General ' Mobile Apps ' Dependencies
(I8 Mobile Apps e
[J Device Agents
_| Name
®
Ol v G iLabyrinth
& scripts
¥ KitchenSink
| seed Data
o ASTAI
1 Global Property Lists i SOASTADemo
@ Session Templates #3 stockfish
L;J Results @Touches_1
] Dashboards {8 Touches_1 Old
& Report Templates -Tweeting
¥ Library UlCatalog
gy Library
g My ltems
= Images

3. Locate and check the Moblile App(s) that you want to authorize this device to
access. For example, iLabyrinth.

4. Click Save on the lower panel toolbar.

16

Record a TouchTest™ Clip using iLabyrinth

First, we will record a simple iLabyrinth clip and add an output to display the
ViewHierarchy from iLabyrinth. Because we have yet to make modifications that will
provide solutions to app internal states, this clip will not capture all of the necessary app
internal state information that our final test composition will need in order to succeed.

1. Start the TouchTest Agent in Safari before proceeding.
TouchTest™ Agent
P

by SOASTA

*® Connected

Device Agent Nam

ipad-tester100

CloudTest URL
http://ctmobile.soasta.com/concerto
ser Name

ipad-tester100

Build

6057

Once successfully logged on, its Status will be Connected.

2. Login to CloudTest on your desktop computer and select Central > Clips, and
then click New Q on the Central toolbar.

A new Untitled Test Clip opens in a Clip Editor tab. A Record pop-up identifies the
Record drop-down.

Y @oereece

(o] (F1E[6] (X] (@] (L[] L) (=

___4

Record

Click the Record drop-down to begin a mobile

app recording.

17

3. Once ready, click the Record drop-down and then select Record Mobile App.

) 4 & Untitled Test Clip _
J (X (@) [l]
{ s Record MobileAppJ

The Choose a Device Agent and Mobile App wizard appears.

Note: If the steps to associate mobile apps with the device have been
completed, they will appear here in the Mobile App list whenever that
device agent is selected.

Choose a Device Agent and Mobile App

Device Agent

| Name | os | Status
E) ipad-tester100 #i0S5.1 @ Disconnected
8)) SOASTADOC iPhone #i0S5.1.1 & Connected
B)) SOASTADOC Simulator #i0S5.1 Disconnected
B)) Tester iPad #i0S5.1.1 @ Disconnected
Mobile App

| Name Version

S iLabyrinth 32

| cancel | | Record |

4. Select the TouchTest Agent that you created above and also select the mobile
app.

5. Click the Record button in the wizard once your selection is made. TouchTest
Agent will launch the selected app on the selected device.

The iLabyrinth app launches to its initial screen.
6. Perform the a series of game actions on your mobile device.

* Select Play.

18

* Tap the path your agent will take in the labyrinth.
7. Click the Record button again to end recording.

CloudTest® AT u‘_,iuabyrinth /‘\7@ Untitled Test Clip ‘
(@l »ulullvolovll ERNCEN

#

For each app action performed, the Clip Editor adds an app action to the clip.

8. Click Save on the Clip Editor toolbar and name the clip.

9. Next, switch to List view by clicking the Icon drop-down. This will provide a better
view on clip element details.

o
J [B& o) (50 7 [Jeon o) |8 -

1

=y tap

After switching to List view, CloudTest will remember this preference and
subsequent clips will be recorded and/or opened in that mode.

- = 153 & B - i
@) (el (ele) (EIE]E)(X]) O] @EH] > [0 @FE) @ (=
.[[Name I Operation] Parameter 1 1 Parameter 2
ﬁ App Action1 tap classname=EAGLView[0] {"touchCount":"1" "duration":"0.0...C
8 App Action2 pan classname=EAGLView([0] 41.500000,423.500000
8 App Action3 tap classname=EAGLView[0] {"touchCount":"1","duration":"0.1...C
ﬁ‘; App Actiond tap classname=EAGLView[0] {"touchCount":"1","duration":"0.1...C
ﬁ App ActionS tap classname=EAGLView([0] {"touchCount":"1","duration":"0.0...C
ﬁ App Actiong tap classname=EAGLView([0] {"touchCount":"1" "duration":"0.1...C
ﬁ App Action? tap classname=EAGLView([0] {"touchCount":"1" "duration™:"0.1...C
1""duration":"0.2...C

8 App Action8 tap classname=EAGLView[0] {"touchCount":"

Adding a Target-Level Output

Before adding this simple test clip to a composition, let’s add an output to capture the
ViewHierarchy for the iLabyrinth app.

1. Click the Messages/Actions tab in the Clip Editor (at the bottom of the editor).

19

Messages/Actions | Scripts *\Clips ' Properties '.\Selocted: App Action1 ‘\Resulw [_J © 00:00:00.000 @0

Available Targets Included Targets
,!.J Emmanuel's iPad iLabyrinth E.) SOASTADOC iPhone iLabyrinth
,!.J KG iPad 2 SOASTADemo Mobile Test
,!y SOASTADOC iPhone iLabyrinth
I_lw SOASTADOC iPhone SOASTADemo
|E.) SOASTADOC iPhone Stockfish
,!y SOASTADOC Simulator Stockfish
|, Tester iPad Stockfish

N

2. In the Included Targets list, double-click the mobile target. The target opens in a
new Target Editor tab.

CloudTest” frETryTomMeoFToTo)
O [) (e |]

| Geneal [Custo
B Target Info
7’73 Runtime Options Name SOASTADOC iPhone iLabyrinth
(gl Settings
VG Commands applied to every action
Description
Settings
Device Agent SOASTADCC iPhone -
Mobile App iLabyrinth =

v Terminate app at clip completion

Screenshot Validation

__| Add verify screenshot during recording
Within tolerance default is 0 % %

Screenshot delay default is 300 ms ms

3. Click the arrow to expand Commands applied to every action.

A;.J‘ Target Info
7'}5 Runtime Options
(gl Settings
7 1 waits
¥ ¥ Pre-Action Waits
V<7 Post-Action Waits
¥ <> Outputs

20

4. Select the Outputs node.

(© [~ (4] 48]

@ Target Info Outputs
V(g Runtime Options
gl Settings
7% Commands applied to every action
7 1 waits
7 & Pre-Action Waits
V<71 Post-Action Waits

L]

5. Click the green Plus icon to add an output to the workspace.

6. Change the Outputs form, Command drop-down t0 outputViewHierarchy.
Leave the Locator field blank.

:L;.j Target Info Outputs
7 (3 Runtime Options

[Settings Command: outputViewHierarchy

v C: Commands applied to every action
7:2 Waits Locator:
7 & Pre-Action Waits)
[Only if there is an error
V<71 Post-Action Waits
<> outputViewHierarchy

Leave the Target Editor open for the next section.

21

Turn on Screenshot Validation at the Target Level
1. With the target still open in the Target Editor, click the Target Info node.

(© |~ [| 48)

| General Custo

v [y Runtime Options Name SOASTADOC iPhone iLabyrinth
(gl Settings
I»C3 Commands applied to every action
Description
Settings
Device Agent SOASTADOC iPhone
Mobile App iLabyrinth

! Terminate app at clip completion

Screenshot Validation

Add verify screenshot during recording
Within tolerance default is O %

2. In the Screenshot Validation section, check the Add verify screenshot during
recording box.

TIP: Screenshot validation can be also be toggled while recording is active via
the Clip Editor, Etc. (...) menu.

& LB (] |
4& 4 Change Timing Type... =
Hide Info While Recording
v Automatically validate screenshots

Icon Badge: Content Type [2

3. Save the target.

Examine the outputViewHierarchy

Play the simple composition to determine which part of the app internal state is actually
exposed.

1. In the Clip Editor tab, click the Use in Composition drop-down, then select the
Play in Test Composition command.

2. In the Save Test Clip box, name the composition and click OK.
3. The test begins to play and the Result Details dashboard displays.
When the clip appears in the Navigation Tree, click it and expand the Outputs form.

22

Output

Outputs

Name: | outputViewHierarchy

Command: output-viewHierarchy

Value:

The ViewHierarchy shown above demonstrates that the OpenGL app internal state is
unexposed. What we see here is only one object, that of the main frame. Additionally,

since only the main frame is shown in the ViewHierarchy, a meaningful test cannot be
built.

23

Exposing the App Internal State using TouchTest

In this section, we will learn how the iOS Developer can use TouchTest techniques to
expose information from objects that don’t display their internal data.

Because we ran the MakeAppTouchTestable utility above (or alternately, the Xcode
project modifications described in the Appendix at the end of this tutorial), our project
already has the following TouchTest modifications:

* An #ifdef in main.m

* A TouchTestDriver startSession URL in AppDelegate (UDAppDelegate.m in
iLabyrinth)

Additionally, we will manually extend the iLabyrinth source to expose some values and
characters from the game that will be used in waits and validations in the test clip.

In order to to expose the iLabyrinth app internal states the following project additions will
be made:

* Create a new class, TouchTestHelper.h

* Add a helper file, TouchTestHelper.m that has the following:
o An import statement #import TouchTestHelper.h
o An implementation statement @implementation TouchTestHelper
o An implementation statement @implementation UIApplication

This method will define a category in the iOS framework class, UlApplication to
add a CloudTest Mobile method to the existing class. Other TouchTestHelper
details are presented in the following two sections.

Creating the TouchTestHelper.h

Create a new file in your project named TouchTestHelper.h. You can use the code
snippets for each step below.

1. In your text editor, add the following three lines to import the necessary header
files:

#import <Foundation/Foundation.h>
#import "CCScene.h"
#import "UDCharacter.h"

2. Add an @interface line that calls NSObject with the additional lines shown below:
@interface TouchTestHelper : NSObject

+ (TouchTestHelper x)sharedInstance;
+ (id)accessObject: (NSString*)name inObject: (id)object;

— (NSString x)getAppInternalValue: (NSString *x)value withArgs:
(NSDictionary *)args;
3. Add the @end statement.

24

Your TouchTestHelper.h file should look like this:

#import <Foundation/Foundation.h>
#import "CCScene.h"
#import "UDCharacter.h"

@interface TouchTestHelper : NSObject

+ (TouchTestHelper *x)sharedInstance;
+ (id)accessObject: (NSString*)name inObject:(id)object;

- (NSString =)getAppInternalValue: (NSString *)value withArgs:(NSDictionary *)args;

@end

Creating the TouchTestHelper.m File

1. Create a new file named TouchTestHelper.m. You can use the code snippets for
each step below.

2. Add three import statements to utilize the header file, game scene and layer:

#import "TouchTestHelper.h"
#import "UDGameScene.h"
#import "UDGamelLayer.h"

1. Add the implementation line to specify TouchTestHelper:
@implementation TouchTestHelper
id originalDelegate;

static TouchTestHelper x_sharedInstance = nil;

2. Add a singleton accessor section:

VESS
* Singleton accessor
*/
+ (TouchTestHelper *)sharedInstance {
@synchronized([TouchTestHelper class]) {
if (!_sharedInstance) _sharedInstance = [[self alloc]
init];
return _sharedInstance;
¥
// to avoid compiler warning
return nil;

}

3. Add an Introspection utility method:

/%%

* Introspection util method

*/

+(id)accessObject: (NSStringx)name inObject:(id)object
{

return [object valueForKey:name];

25

}

4. Using NSString, add the getApplnternalValue method that will return the app
internal states using the accompanying definitions. The returned values will be
used in CloudTest via the accessors outputApplnternalState,
waitForApplinternalState, and verifyApplnternalState.

/%%

*

* This method returns the app internal states defined as :
*

* - scene : return the current scene class name, empty
string if no game scene found.

* — character.position : return the main character position, N/A if
it is not a the current scene do not involve the character

* - character.status : main character status, if it is walking the

status is "busy" else it is idle even if the current scene do not involve
the character

b 3

*/

—(NSString x)getAppInternalValue: (NSString *)value withArgs:(NSDictionary
x)args

NSString *result = @"'n-a";

// Get the current scene
CCScene *_currentScene = [[CCDirector sharedDirector] runningScenel;

if([value isEqual:@"scene"])
{
// Get the current scene
if(_currentScene)

result = [[_currentScene class] description];

¥
else if([value isEqual:@"character.position"])

// Get the current character position
%f([_currentScene isKindOfClass: [UDGameScene class]])
UDGamelLayer xgameLayer = (UDGamelLayerx) [TouchTestHelper
accessObject:@"_gameLayer" inObject:_currentScene];
UDCharacter xcharacter = (UDCharacterx) [TouchTestHelper
accessObject:@"_char" inObject:gamelLayer];
result = NSStringFromCGPoint([character gridPosition]);

}

else if([value isEqual:@"character.status"])
{
BOOL isWalking = NO;
// If it is a game scene it happen the charDidFinishWalking is fired
before the character finished moving
// In that case we will double check also if the character really
ended
if([_currentScene isKindOfClass: [UDGameScene class]])
{
UDGameLayer *xgameLayer = (UDGamelLayerx) [TouchTestHelper

26

accessObject:@"_gameLayer" inObject:_currentScene];

UDCharacter xcharacter = (UDCharacterx) [TouchTestHelper
accessObject:@"_char" inObject:gameLayer];

NSLog(@"Flagged as non walking and buzy = %@", [character
isBussy] ? @"YES" : @"N0");

iswalking = [character isBussyl;

// Get the current character status, walking boolean is assigned
using UDCharacterDelegate (charWillBeginWalking/charDidFinishWalking)
result = isWalking ? @"busy" : @"idle";

NSLog(@"%@="'%@'", value, result);

return result;

}
@end

5. Finally, add a category on UlApplication to get some values and arguments that
will be used in CloudTest’s waitForApplinternalState wait.

This category will get the current scene (runingScene) from the Cocos2D
framework, the character position on the game screen (gridPosition), as well as
the character status (busy/idle).

/*%

* Category on UIApplication required to initialize the
appInternalValue accessor in TouchTest

*/
@implementation UIApplication (CloudTestMobile)

/*%

* This is a general purpose function to return internal app state.
*/

+(NSString x)getAppInternalValue: (NSString *)value withArgs:
(NSDictionary x)args

{

return [[TouchTestHelper sharedInstance]
getAppInternalValue:value withArgs:args];

@end
Add the TouchTestHelper Files to the Automation Target

Both of the TouchTestHelper files should be added to the project using the following
steps.

1. With the project open, select the iLabyrinth > Classes folder and right-click to
choose Add Files to Project.

27

» = CorelLocation.framework

> B Classes A -
> [Other Sourd Show in Finder o
» [] Resources Open with External Editor 0
» [Resources-| Open As >

» [| Resources-| 3
v [Frameworks New F'Ie‘--'
v [Jcocos2p New Project...

Conl
% écc:; New Group
im| CCACt New Group from Selection
% :::Cciz:: Sort by Name

h] CCAt Sort by Type

% Egg Add Files to “iLabyrinth”...

m| CCACY pelete

|h) cCActl
m| CCAct Source Control >
|h] cCAct
Im| cCActi Project Navigator Help >

|h| CCActionmtervarh

=

Navigate to the location of the TouchTestHelper files and select them.

Check the box marked "Copy items into the destination group's folder” (if
necessary).

28

| «|» |[28 mm | im || == v || 3 OpenGL tutorial 2] (Q
= All My Files _ Name . ,~ Date
_ Macintosh HD ~ inspecting L.tiff Jul 3,
EI SOASTA CloudTest Rel. .. = list view of clip 1.tiff Jul 3,
— - - _ mobile app ilaby detail.tiff Jul 3,
) Desktop = mobile app object ilaby.tiff Jul 3,
[Bﬁ Documents scheme drop down...byrinth with TT.tiff Jul 3,
r/-\; Applications B SOASTA_TouchTes...utorial_lstDraft.doc Jul 3,
.U Music «= swith to list view ilaby.tiff Jul 3,
= test clip icon view 1.tiff Jul 3,
=1 Movies |h| TouchTestHelper.h Toda
Pictures [m| TouchTestHelper.m Toda
E' AAC.savedSearch ! virgin project view.tiff Jul 3,
A
Destination [V/ Copy items into destination group's folder (if needed)
Folders () Create groups for any added folders
() Create folder references for any added folders
Add to targets | | oA iLabyrinth

|| ¥ iLabyrinth-Lite

/A iLabyrinth copy
| New Folder | | Cancel | | Add |

4. Specify the newly-created Automation Target (iLabyrinth copy) by checking its box
in the Add to targets section in the lower panel.

5. Click Add to complete adding the files.

|| 2 @ A = » B mla > | D iLabyrinth.xc
iLabyrinth
vB; targets, i0S SDK 5.1 . PROJ_ECT)
- : b iLabyrinth
E] TouchTestHelper.h TARGETS
im| TouchTestHelper.m oA, iLabyrinth
» || Support)) .
> Bl scenes oA iLabyrinth-Lite
@ iLabyrinth.h 'A

@ iLabyrinth.m

@ UDAppDelegate.h

&] UDAppDelegate.m M |
» || Other Sources M|
» [| Resources
» || Resources-iPad
» || Resources-Lite
» | | Frameworks

29

Managing Animations and Map Levels in iLabyrinth

Since the iLabyrinth app, like many OpenGL apps, includes character and scene
animations we will offer some options to turn them off in the sections below. Additionally,
a technique to provide TouchTest easier access to the game levels selected on the
PickMap is presented.

Revising iLabyrinth.m to Access Map Levels

To gain easier access to each iLabyrinth game level, insert the following code as
described below.

1. Open the iLabyrinth.m file.
2. Locate the following section:

- (BOOL)canPlayMap: (NSUInteger)map {
#if TARGET_IPHONE_SIMULATOR
// If we are on simulator, enable all maps for easyer testing

return YES;
#endif

if(map == 1 || [_compleatedMaps containsObject: [NSNumber
numberWithInt:mapl] || [_compleatedMaps containsObject: [NSNumber
numberWithInt:map-11]){

return YES;

b

return NO

¥

3. Insert the following #ifdef statement after the #endif line shown above.

#ifdef TOUCHTESTDRIVER
/I If we are on TOUCHTESTDRIVER, enable all maps for easier testing
return YES;

#endif

30

Revising UDGameLayer.m to Turn off Water Animation

To make it easier to take and verify screenshots of the mobile app during testing, we will
turn off iLabyrinth’s water animations since they are not crucial to the test. This will be
done by unincluding all but one of the water sprites used in the app.

Note: Although CloudTest’s tolerance setting could do the same thing, it won't
do as efficiently in this case because the water size is too near the
character size, which might miss real image validation failure.

When relying upon image comparison validation, it can be useful to disable game
animations that might otherwise be in display. By using this optional technique, you can
workaround having to set image tolerance for each verifyScreenshot.

The following steps will turn off iLabyrinth’s water animations using #ifndef with the
TOUCHTESTDRIVER macro.

1. Open the UDGameLayer.m file (in the Scenes, UDGameScene, Gamelayer folder).

2. Go to the end of the first sprite line (the line whose PNG value is @'S21_2.png) or
Line 226.

NSMutableArray *animFrames = [NSMutableArray array];
[animFrames addObject: [[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName:@"S21_2.png"
teFrame che "g2

- 1
[animFrames addObject: [[CCSpri Cache sharedSpriteFrameCache] spriteFrameByName:@"S21_3.png"]];
[animFrames addObject: [[CCSpr Ca sharedSpriteFrameCache] spriteFrameByName 21_4.png"1];
[animFrames addObject:[[CCS Ca sharedSpriteFrameCache] spriteFrameByName 21_5.png"1];
[animFrames addObject: [[CCSpr Cac sharedSpriteFrameCache] spriteFrameByName 21_6.png"]];
[animFrames addObject: [[CCSpr Ca sharedSpriteFrameCache] spriteFrameByName 521_7.png"]]
[animFrames addObject:[[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName:@"S21_8.png"]]
[upperSprite runAction: [CCRepeatForever actionWithAction:

nimate actionWithAnimation:
[CCAnimation animationWithFrames:animFrames delay:0.5f]1]1];

1. Add a new line before the next sprite line:
#ifndef TOUCHTESTDRIVER

2. Add a new line after the last sprite line:
#endif

Your modifications should look like this:

NSMutableArray *animFrames = [NSMutableArray array];

[animFrames addObject:[[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName:@"S21_2
#ifndef TOUCHTESTDRIVER
[animFrames addObject: [[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName:
[animFrames addObject: [[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName:
[animFrames addObject: [[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName:
[animFrames addObject:[[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName:
[animFrames addObject:[[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName:
[animFrames addObject:[[CCSpriteFrameCache sharedSpriteFrameCache] spriteFrameByName:
#endif

[upperSprite runAction: [CCRe

ever actionWithAction:
tionWithAnimation:
ation animationWithFrames:animFrames delay:0.5f]1]];

Adding App Internal States to a Test

Next, let’s return to the Clip Editor and revise the test clip created above to use the newly
exposed app internal states. We will use the following guidelines:

31

* At the target level, add a post-wait action for character.status idle so that no
actions are performed during a character’s animation.

Each time the action changes the scene, add a post-wait action for the scene
value.

Optionally, use character position to perform some validations.

Adding Outputs for AppinternalState at the Target Level
Next, we’ll add two outputs that utilize outputApplnternalValue.

1. Click the arrow to expand Commands applied to every action.

«{s) Target Info
v u Runtime Options
5/ Settings
7 1 waits
7 ¥ Pre-Action Waits
V<1 Post-Action Waits

¥ <> Outputs

4. Change the Outputs form, Command drop-down t0 outputViewHierarchy.
Leave the Locator field blank.

(s Target Info Outputs

¥ g Runtime Options
n Settings Command: outputViewHierarchy
7% Commands applied to every action
’-I Waits Locator:

7 ¥ Pre-Action Waits
Bl Only if there is an error
V< ! Post-Action Waits

¥ <> Outputs

<» outputViewHierarchy

5. Save the target.

Adding a Wait for Idle at the Target Level

Before adding this simple test clip to a composition, let’s add an target-level post-action
wait that will wait for the character status to be idle.

32

Note: The developer will want to ensure that accessor is going to return ‘idle’ in
cases where the character isn’t in display. For example, on the game
scene or before pressing play game, there’s no character, the accessor is
‘idle’ for cases when the character is not present.

2. Click the Messages/Actions tab in the Clip Editor (at the bottom of the editor).

Messages/Actions | Scripts | Clips | Properties | Selected: App Action1 | Results | | © 00:00:00.000 @0

Available Targets) Included Targets
B.) Emmanuel's iPad iLabyrinth [!‘y SOASTADOC iPhone iLabyrinth
E.) KG iPad 2 SOASTADemo Mobile Test
E.) SOASTADOC iPhone iLabyrinth
E.) SOASTADOC iPhone SOASTADemo
!y SOASTADOC iPhone Stockfish
!.) SOASTADOC Simulator Stockfish
B, Tester iPad Stockfish

2

3. Inthe Included Targets list, double-click the mobile target. The target opens in the
Target Editor tab as before.

4. Click the arrow to expand Commands applied to every action.

a(s) Target Info
7([3 Runtime Options
(gl Settings
(’I Waits
7 & Pre-Action Waits
V<] Post-Action Waits

¥ < Outputs
5. Select the Waits, Post-Action Waits node.

afe) Target Info
v U Runtime Options
5l Settings
f:: Commands applied to every action
"I Waits N
7 & Pre-Action Waits v
V<> Outputs

<> outputViewHierarchy

6. Click the green Plus icon to add an output to the workspace.
7. Change the Outputs form, Command drop-down t0 waitForAppInternalValue.

33

a(s) Target Info

73 Runtime Options Command: | outputAppinternalValue
0/ Settings - -
N alue to Access: h w
«'Cj Commands applied to every action character. position
> "n =
v
R Arguments:
v & Pre-Action Waits
¥'=d Post-Action Waits Only if there is an error

~: waitForApplinternalValue
7 <) Outputs
<> outputViewHierarchy
<> outputAppinternalValue
{» outputApplinternalValue-1

8. In the Value to Access field, use the character.position value we defined in the
app source above.

9. Click the green Plus icon a second time to add another output.

10.Change the Outputs form, Command drop-down t0 waitForAppInternalValue.

11.1n the Value to Access field, use the scene value we defined in the app source above.

(©l-) (&] 48]

a(s) Target Info
v b Runtime Options Command: outputApplnternalValue
5. Settings
. Value to Access: scene
7Ca Commands applied to every action
7 1 waits

7 & Pre-Action Waits

Arguments:

e ,}ﬂ . o) .
Al Only if there is an error
»: waitForApplnternalValue
7<) Outputs
{» outputViewHierarchy

<> outputApplinternalValue

<> outputAppinternalValue-1

12.Save the target.

Record a Second Clip with Screenshot Validation

Now that the underlying mobile target has screenshot validation enabled, and the project
app internal values are exposed, create a second Untitled Test Clip using iLabyrinth.

1. With Central > Clips selected, click New Q on the Central toolbar.
A new Untitled Test Clip opens in a Clip Editor tab.

34

o) (FIE[E] (X] (@] (] L[] B (=

—

Record

Click the Record drop-down to begin a mobile

app recording.

2. Once ready, click the Record drop-down and then select Record Mobile App.

) 4 & untitied Test Clip _
J(X) (@)]]

[s Record Mobile App J

The Choose a Device Agent and Mobile App wizard appears. Select the same Device
Agent and Mobile App to utilize the same underlying mobile target as before (i.e. the one
that has Screenshot Validation enabled).

3. Perform one complete level of the iLabyrinth game at any level of the game.

4. Click the Record button again to end recording.

Adding a Post-Wait for a Scene Change

For every scene change at the action level, we will add a post-action wait using the
steps below.

Dt

1. Click App Action1’s Gear icon to show the Info Window.
2. In the General tab, change App Action1 to New Game.

S8 App Action1 tap classname=EAGLView[0]
e . At
PO ERvE >
General
Action tap

Name App Action1
Target SOASTADOC iPhone iLabyrinth
Errors should: | fail the parent

Scope | Private

Description

35

3. Click the Waits “= tab.
4. In the Waits after the action section, click the green Plus icon.

5. Change the Command to waitForAppInternalvValue.

Waits after the action

v/ Command: | output-isGestureComplete
Timeout Action: Record in Results Only
Command: waitForApplinternalValue H ¥+ X

Value to Access: scene

Arguments:
Glob : *PickMap®
Timeout Action: Record in Results Only

6. The Value to Access is scene.

7. Change the Pattern selector to Glob and enter *pickMap* to (this will get a match
from the UDPickMapScene).

TIP: This post-action wait needs to be added for every action that changes
the scene. In iLabyrinth, this means adding the wait for every switch
between UDPickMapScene, UDGameScene, UDMenuScene, and so
forth.

For example, add a second post-action wait for the action that changes the scene to
UDGame Scene. In this post-action wait, we will use a Glob, *Game*, that will match
UDGameScene.

36

Waits after the action

@ Command: | output-isGestureComplete

Timeout Action: Record in Results Only

Command: | waitForAppinternalValue
Value to Access: | gcene
Arguments:
[Glob 3| | *Game’

Timeout Action: Record in Results Only

-

-

| 4

| 4 X

37

Examining Image Validations using verifyScreenshot

Validations are the technique used to verify that a test event occurs as expected.

By turning on Screenshot Validation at the target level before creating a mobile
recording, we automatically added the verifyScreenshot validation to each of the

recorded app actions.

1. With the the Info Window for App Action1 open, click the Validation % tab.

2. Note that the validation has been added and the screenshot to compare has also
been captured during mobile app recording.

flr" New Game tap classname=EAGLView[0]
7 ——a — e A~ Seetn
& ¢ [mEc
Validations
Command:

verifyScreenshot

* K
Tolerance (%):
Screenshot:
1 *{ 5 8 1 + 2,
9 "-l P 7] :’.,75
10 ‘Pn i b 13 /30 14
197 & ”' e | 17 16 1 < 175
%
Errors should: ' pe recorded only
Customize result success/error messages
TIP: This validation can be added for as many actions as desired.

In the case of verifyScreenshot, CloudTest Mobile will verify by image comparison in the

Outputs form, Validations section, Expected (captured while recording) and the
Observed (captured during playback) tabs.

38

Output

Validations

Name: | verifyScreenshot

Command: | output-captureScreenshot

‘ Expected Observed)

\
%
(% \
®)

be

!
|
). R
Ne

)

~/ ’LDU
-\ C‘

(o)

J

;
ity

Lo f
!

B\
2l
\

i
D)
%
) B
/ .
)i ey
%

(G
%
T

i ’\

&)

{

~
\

S
~

~
)

D)
8 %
1
D
L)
i®
%
';b):.f;b\ 50)
al/ S~/ N

)

\

\ \
I
o
L7

}

S D) D
oy, .y
%

N
L7

Where any change is detected in the comparison, a Diffs tab will also appear in the
Result Details, Outputs form.

Output

Validations

Name: | verifyScreenshot

Command: | output-captureScreenshot

Expected | Observed | Dif |

Improving Test Clip Readability

Use the following clip editing techniques to ensure a readable, easy-to-follow test result.

1. Optionally, make the following additional test clip changes by scrolling through the

Info Window (using the right arrow at the top of the window).

» [RBC)
5 b

]
b

Rename App Action2 to Start Game.

Select the remaining app actions, right-click, and then choose Add to Group.
Rename the new Group1 to Play game

39

Llﬁ_l;J[_cﬂ_l_ﬂ_Jlu-loﬂJ[BlLﬁllﬁ_JlXJ[Q_'J@
L J P ter 1

| Name | op
@ New Game tap classname=EAGLView[0]
& start Game tap classname=EAGLView[0]

¥ & Play game

§8 App Action3 tap classname=EAGLView[0]
§ App Actions tap classname=EAGLView[0]
Q App Action5 tap classname=EAGLView[0]
@ App Actiong tap classname=EAGLView[0]
@ App Action7 tap classname=EAGLView[0]
Q App Action8 tap classname=EAGLView[0]
Q App Action9 tap classname=EAGLView[0]

40

Viewing App Internal States in a Result

1. From the Clip Editor toolbar, click the Use in Test Composition drop-down and
select Play in Test Composition from the menu.

)) (o) () @) (@

eter 2

— ﬁf’ Open in Test Composition al

hCount"1", I)

hCount":"1"" f Debug in Test Composition wnt""1%}

hCount™:"1" "duration™:"...000,18.000000","tapCount":"17}

2. The Save dialog box appears. Name the clip and click OK.

Save Test Clip
Save As

Name:
BVT Clip

Where:

/
| Common

| MobileGuide

w
| [Company Demo
w
|+ [System Objects

\ New Folder | | CK || Cancel]

If your TouchTest Agent status is “Connected” the composition plays, otherwise
respond to the prompt by starting it and then clicking Continue.

When you do so, a new Composition Editor tab opens with the example clip placed into
Track 1. Once loaded, the test composition begins to play and the mobile app actions
are repeated on the mobile device precisely as specified.

Inspecting Result Details

While the test runs, the Composition Editor’s Status Indicator changes to “Playing”

[/ Edit (¥ Debug Play | [] Resuts | |¥f - |

V) Playing | status log...

41

The Play tab displays and the Result Details dashboard is shown. The Result Details
dashboard helps to discover the cause of errors in your test, if any.

While play continues results are posted in the Composition Editor, Play tab, Result
Details widget.

Result Detalls
Yshmmsmus:\ Is & || Al :| | ElementType: | Is || All % | | Operation: [Is || Al %]
7 & Composition for Clip for SOASTADOC iPhone iLabyrinth-¢ (1] < Playing | Total Components: 9 Total Messages and Actions: 5 Error Components: 0 Error Messages and Actions: 0 (§ Jump to
v £ Band1
a
7 [@ Ciip for SOASTADOC iPhone iLabyrinth-6 [| V @
(&) SOASTADOC iPhone iLabyrinth @
58 New Game
ﬁ Start Game Band1 » Track1 » Clip for SOASTADOC iPhone iLabyrinth-6 » Play game » App Action5
¥ € Play game <
8 rop Action3 Summary | Even:s List
$8 App Actiond
§8 App Actions. General
Operation: tap Name: App Action5
Start Time Response Time
31.888 sec. 12 sec.
Waits And Validations [#] Custom Properties

verifyScreenshot: Passed
buitin-waitForGestureToComplete: Passed
verifyScreenshotDelay: Passed

Input [Z] Output

Validations
Name: | Locator

Vale: | classname=EAGLView([0] Name: | verifyScreenshot

Command: | output-captureScreenshot

Name: Tap Count

Expected | Observed
Vale: | {‘touchCount""1","duration":0.002519","tapOffset""t

a a

1. Once results are complete, click the clip in the Navigation Tree.

Result Detalls
Y Element Status: [1s ¢ | [Al :]| | ElementType: [1s ¢ | [All +]| | Operation: [1s | [Al ¢
¥ B2 Composiion for Clp for SOASTADOC iPhone iLabyrinth-¢ (&) /7 Completed - With No Effors | Total Components: 12 Total Messages and Actions: 8 Error Components: 0
7 £ Band1
v W Track 1 Y aa&azaa
¥ ® Clip for SOASTADOC iPhone iLabyrinth-6 @ bi] - -
(&) SOASTADOC iPhone iLabyrinth Lapy) -y)88 E
$8 New Game
ﬁsmnsame Band1 » Track1 » Clip for SOASTADOC iPhone iLabyrinth-6 » New Game
7 © Play game < >
& App Actions Summary | Events List
$8 Aop Actions
ﬁ App Action5 General
£8 App Actions Operation: tap Name: New Game
$8 App Action?
8 App Action8 Start Time Response Time
S Aop Actions 5.776 sec. 6.598 sec.
Waits And Validations |+ Custom Properties
verifyScreenshot: Passed
buittin-waitForGestureToComplete: Passed
verifyScreenshotDelay: Passed
waitForAppinternalValue: Passed
Input (] Output &

Validations
Name: | Locator

Value: | classname=EAGLView[0] Name: | verifyScreenshot
Command: | output-captureScreenshot

Name: | Tap Count

| Expected | Observed
Value: | {"duration™:"0.003610", touchCount":"1",tapOffset":"1
- \ ==\
1o e & rﬂ,].'.'

42

2. In the Waits and Validations section, click the verifyScrenshotDelay. This delay
was automatically added as part of enabling screenshot validation.
Waits And Validations P

buittin-waitForGestureToComplete: Passed
verifyScreenshotDelay: Passed

Input P

Name: verifyScreenshotDelay

Command: | \qit-forTimeDelay

Name: waitForApplinternalValue

Command: | 5 tpt-applinternalValue

3. Click the first app action, New Game. In the result shown below, all of the
accessors succeeded.

Waits And Validations ' Custom Properties

verifyScreenshot: Passed
builtin-waitForGestureToComplete: Passed
verifyScreenshotDelay: Passed
waitForAppinternalValue: Passed

Input ' Output

Validations
Name: | Locator

Value: | classname=EAGLView[0] Name: | verifyScreenshot

Command: |output-captureScreenshot

Name: | Tap Count

| Expected | Observed |
Value: | {"duration™:"0.003610","touchCount™"1""tapOffset"1

o 8
| S e

Ve (el o (Fal) > (D)

43

4. Click the waitForApplnternalValue item in the list. The Input node below snaps-to
and the wait details are displayed.

Waits And Validations B

verifyScreenshot: Passed
builtin-waitForGestureToComplete: Passed

verifyScreenshotDelay: Passed
waitForAppinternalValue: Passed

Input
Name: |\ aitForAppinternalValue

Command: output-appinternalValue

PickMap

44

5. Next, click the Start Game app action, and not that the waitForApplnternalvalue
for the Game scene also passed.

Waits And Validations

%

verifyScreenshot: Passed
buitin-waitForGestureToComplete: Passed

verifyScreenshotDelay: Passed
waitForAppinternalValue: Passed

Input

%

Name: waitForApplinternalValue

Command:

output-applinternalValue

scene

Game

6. For any selection, click the Events List tab in the workspace to examine additional
details about that action.

| Summary | EventsList |

Event(s)
Event Time Level Event Code Description

286 18725 Info App Action: send Performing App Action.
Band: "Band 1" Track: "Track 17 Clip: "-?-" Group: "Play game” Target: "SOASTADOC iPhone iLabyrinth™ App Action:
“App Action3”

27 18728 Verbose Transport: appbeg Performing App Action "App Action3" for Destination "SOASTADOC iPhone iLabyrinth", operation "tap".

Band: "Band 1" Track: "Track 17 Clip: "-?-" Group: "Play game” Target: "SOASTADOC iPhone iLabyrinth™ App Action:
“App Action3”

P Details:
28 25084 Verbose Transport: append App Action "App Action3" completed.

Band: "Band 1" Track: "Track 17 Clip: "-?-" Group: "Play game” Target: "SOASTADOC iPhone iLabyrinth™ App Action:
“App Action3”

P Details:

28 25084 Info Validation: vstart Starting validation "verifyS: hot".
Band: "Band 1" Track: "Track 17 Clip: "-?-" Group: "Play game” Target: "SOASTADOC iPhone iLabyrinth™ App Action:
“App Action3”

30 25088 Verbose Validation: vcpass Validation of response body passed.
Band: "Band 1" Track: "Track 1* Clip: "-?-" Group: "Play game” Target: "SOASTADOC iPhone iLabyrinth™ App Action:
“App Action3”
P Details:

31 25088 Info Validation: vpass verify hot p d
Band: "Band 1" Track: "Track 17 Clip: "-?-" Group: "Play game” Target: "SOASTADOC iPhone iLabyrinth™ App Action:
“App Action3”

32 25088 Info App Action: sent App Action completed.
Band: "Band 1" Track: "Track 1* Clip: "-?-" Group: "Play game” Target: "SOASTADOC iPhone iLabyrinth™ App Action:
“App Action3”

33 25089 Statistics App Action: stats App Action statistics.
Band: "Band 1" Track: "Track 1* Clip: "-?-" Group: "Play game” Target: "SOASTADOC iPhone iLabyrinth™ App Action:
“App Action3”
P Details:

45

Appendix: Manually Adding TouchTest™ to the Xcode Project

Instructions to manually configure your iLabyrinth Xcode project for TouchTest™ are
provided below. If you’ve already done so using the MakeAppTouchTestable utility it is
not necessary to do so again.

To get started, let’s first create a duplicate of the project. By using a duplicate, we’ll
always have the original project as a benchmark.

1. Open the iLabyrinth.xcodeproj file in Xcode.

2. Select the iOS version you wish to build by doing the following:

a) Select the duplicate “iLabyrinth copy” Target. If this copy doesn’t exist

create it now.

b) In the Build Settings, Architectures section, select the Base SDK field.
c) Select the iOS SDK version to use. For example, Latest iOS (iOS 5.1).

Summary
; iLabyrinth Al B Combined |
Setting
¥ Architectures
oA iLabyrinth —
'A‘)) _ Additional SDKs
iLabyrinth-Lite ¥ Architectures
L'Ad Debug

Any i0S Simulator SDK +
Any iOS SDK +
Release
Base SDK
¥ Build Active Architecture Only
Debug
Release
Supported Platforms
Valid Architectures
¥ Build Locations

Build Settings Build Phases Bui

o iLabyrinth copy

Standard (armv7)
i386 v

armvé armv7 ¥

armvé armv7 ¥

Latest iOS (iOS 5.1) +

Yes §

No +

iphonesimulator iphoneos
armvé armv7

3. Select the Project in the (leftmost) list and then right-click to choose Add Files to

“iLabyrinth...”.
|Ea | T @& = B (=) ‘:::: | 4 p» w:iLabyrinth
& i : PRNIFCT
——— === Show in Finder
v | |Classes
> Support
> Scenes Open As >
h) iLabyrinth.h New File...
m| iLabyrinth.m

h| UDAppDelegat New Project... |

m| UDAppDelegat
|__| Other Sources
|__| Resources

|__| Resources-iPad Sort by Name

. New Group
| 2

| 2

> Resources-Lite

= Sort by Type
3

New Group from Selection

Frameworks
Products
D iLabyrinth copy-
> TouchTestDriver

Add Files to “iLabyrinth"...

Source Control =

Project Navigator Help >
I

4. Navigate to the location where you unarchived MakeAppTouchTestable and select
the TouchTestDriver folder.

5. Check the box marked "Copy items into the destination group's folder” (if
necessary).

6. Specify the newly-created target from above by checking its box in the Add to
targets section in the lower panel.

“ a8 l = | o | &=y .| MakeAppTouchTestable 3
= All My Files Name
" Macintosh HD i android
 ios
| 7| SOASTA_CloudTest_Release_N... G lib
.| Desktop = MakeAppTouchTestable.jar
[Documents MakeAppTouchTestable.log
ReadMe.txt

2 Applications :
| | TouchTestDriver

«« Music

i1 Movies

({2 Pictures

| | AAC.savedSearch

Destination \/Copy items into destination group's folder (if needed)

Folders (=) Create groups for any added folders
Create folder references for any added folders

Add to targets o iLabyrinth

oA iLabyrinth-Lite
V! A iLabyrinth copy

New Folder Cancel Add

The example above shows that TouchTest Driver has been selected for addition into the

project and the duplicate target, iLabyrinth copy, is specified in the Add to targets field.

7. With your project still selected in the project tree on the left, select the target (for
example, iLabyrinth copy target) and then select the Build Settings tab.

8. In the Build Settings tab, scroll down to locate the Linking section, and then in the

Other Linker Flags field perform the following:

Note: It is not necessary to expand the Other Linker Flags field unless you’re
maintaining different flags for debug and release. If you are maintaining
different flags, enter them as necessary. Otherwise, you can click into the
field and paste or enter your flag.

* If the user project has the -all 1load flag already present, add the
-objc flag.

—Or—

If the user project already has the -objc flag, add -a11 1oad flag.
If both -a11 10ad and -objc flags are present, no change is necessary.

* If none of the above options are fulfilled, then add the TouchTestDdriver/
libTouchTestDriver.a flag.

Example:

-force_load TouchTestDriver/libTouchTestDriver.a

Summary Info | Build Settings | Build Phases Build Rules
Basic @D ‘ (P Levels

Setting o iLabyrinth copy
Moaule STop Koutne

Module Version

¥ Linking
Bundle Loader
Compatibility Version
Current Library Version
Dead Code Stripping Yes ¥
Display Mangled Names No ¥
Don't Create Position Independent Exe... No v
Don't Dead-Strip Inits and Terms No ¥
Dynamic Library Install Name
Exported Symbols File
Initialization Routine

Link With Standard Libraries Yes +

Mach-0 Type Executable ¥

Order File

Other Linker Flags -0bjC -all_load

¥ Path to Link Map File <Multiple values>

Debug build/iLabyrinth.build /Debug-iphoneos/iLabyrinth copy.build/iLabyrinthcopy-Li...
Release build/iLabyrinth.build /Release-iphoneos/iLabyrinth copy.build/iLabyrinthcopy-L...

Perform Single-Object Prelink No v

Prelink libraries

Dracarua Driviata Futarnal Cumhale (NP

9. Select the Build Phases tab, locate and expand the Link Binary with Libraries
section and then click the Plus (+) button.

Summary Info Build Settings Build Phases

Target Dependencies (0 items)
Copy Bundle Resources (283 items)
Compile Sources (87 items)

Link Binary With Libraries (5 items)
&* Foundation.framework
&% UIKit.framework
&= CoreGraphics.framework
&= AudioToolbox.framework
“ libTouchTestDriver.a
+

4

Click:here to add binaries

10.In the Choose frameworks and libraries to add: dialog box, add the
CoreGraphics.framefork and the CFNetwork.framework.

Choose frameworks and libraries to add:

v ([]i0s 5.1

™ Accelerate.framework
™ Accounts.framework
™ AddressBook.framework
&™ AddressBookUl.framework
Q?.‘ AssetsLibrary.framework
™ AudioToolbox.framework
&= AudioUnit.framework
&* AVFoundation.framework

~ bundlel.o
[
& CoreAudio.framework
& CoreBluetooth.framework
&® CoreData.framework
&® CoreFoundation.framework

-~

[X3

| Add Other... | | Cancel | Add

11.Next, select the Info tab, select the URL Types section, and then add a URL Type
to the target.

» Exported UTls (0)
» Imported UTls (0)
¥ URL Types (0)

No URL Types

([l Fite

:

Obj-C

Add Document Type
Add Exported UTI o
Add Imported UTI

Add URL Type
é = 1«:.(_

Add >

©

Validate Settings

12.Enter the target name as the Identifier. For example, iLabyrinth.

v iLabyrinth

Identifier iLabyrinth URL Schemes | Non

No

mage Icon | None

specified

= Role |E

» Additional url type properties (0)

13.Enter the URL Scheme.

¥ URL Types (1)

v iLabyrinth

Identifier iLabyrinth URL Schemes | soasta-mobile-
I T To] test-944dc44b-666d-4045-
con)) None v a04c-7b9fe62b4abfb
Role | Editor s
p Additional url type properties (0)

Note: In the Xcode URL Schemes field the "soasta-mobile-test-AppID" format
is used. The URL Scheme here MUST be the same as the prefix portion
of the Launch URL, as specified in the CloudTest® user's Mobile App
Object (covered below). For example, soasta-mobile-
test-944dc44b-666d-4045-a04c-7b9fe62b4bfb.

Bl (] 4)
Name iLabyrinth
Description
Version 32
0s iCS

Minimum CS Version 5.0
Supported Device Type Universal

Minimum Device Version

Launch URL soasta-mobile-test-944dc44b-666d-404 5-a04c-7bSfe62bdbfb//
iLabyrinth_icon.png =
Icon
Import El
TIP: The automatic method generates this ID in the duplicate target. For the

manual method, you can use a command like uuidgen in Terminal if a
uuid is desired. However, only requirement is that the Xcode URL
Scheme matches the one in CloudTest’s Mobile App form (with the
protocol syntax :// added).

14.Next, select the Build Settings tab a second time, and locate the Apple LLVM
compiler 3.1 section (shown below).

15.Click the Preprocessor Macros heading and the Plus + icon to add

Build Settings Build Phases Build Rules

TOUCHTESTDRIVER.
Summary Info
Basic (._\ ‘ oD Levels

Setting
Objective-C Automatic Reterence Counting

Objective-C Garbage Collection

Other C Flags

Other C++ Flags

Precompile Prefix Header

Prefix Header

Recognize Built-in Functions

Recognize Pascal Strings

Set Qutput File Subtype to ALL

Short Enumeration Constants

Use Standard System Header Directory...
v Apple LLVM compiler 3.1 - Preprocessing

Preprocessor Macros

Preprocessor Macros Not Used In Preco...
v Apple LLVM compiler 3.1 - Warnings

Check Switch Statements

o iLabyrinth copy
No +

Unsupported »

Yes ¥
Prefix.pch
Yes v
Yes ¥
No ¥
No
Yes v

TOUCHTESTDRIVER

Yes 5

. A

Finally, we will make some source code modifications to the project’s main.m and
AppDelegate files.

16.In main.m, include the required header file by adding the following code:
#ifdef TOUCHTESTDRIVER
#import "TouchTestDriver.h"
#endif

17. Next, also in main.m, include the following code in the main() function. This code
will initialize TouchTestDriver.

#ifdef TOUCHTESTDRIVER
[TouchTestDriver initDriver];
#endif

Your changes in the prior two steps revising main.m (or main.mm) should look like this:

//

// main.m

// 1ilLabyrinth

//

// Created by Rolandas Razma on 5/12/10.

// Copyright 2010 UD7. All rights reserved.
//

#ifdef TOUCHTESTDRIVER
#import "TouchTestDriver.h"
#endif

#import <UIKit/UIKit.h>

int main(int argc, char *argv[]) {
#ifdef TOUCHTESTDRIVER
[TouchTestDriver initDriver];
#endif

@autoreleasepool {
return UIApplicationMain(argc, argv, nil, @"UDAppDelegate");
}

18.1n the AppDelegate file, include the required header by adding the following code:
#ifdef TOUCHTESTDRIVER
#import "TouchTestDriver.h"
#endif
Your changes to AppDelegate should look like this:

/7

// UDAppDelegate.m

// 1ilLabyrinth

/7

// Created by Rolandas Razma on 5/12/180.

// Copyright 2010 UD7. All rights reserved.
/7

#ifdef TOUCHTESTDRIVER
#import "TouchTestDriver.h"
#endif

#import "UDAppDelegate.h"
#import "ilLabyrinth.h"
#import "UDMenuScene.h"
#import "UDGameScene.h"
#import "SimpleAudioEngine.h"
#import "UDGameEndScene.h"
#import "CCDirectorIOS.h"

19.Then, include the following code to either the hand1leOpenURL or the openURL
method, whichever exists in AppDelegate (they are mutually exclusive).

#ifdef TOUCHTESTDRIVER
[TouchTestDriver startSession:url];
#endif

Note: If neither of these methods exist, please add the following method (the
text below can be copied and pasted):

- (BOOL)application: (UIApplication *)application openURL: (NSURL *)url sourceApplication:
(NSString *)sourceApplication annotation:(id)annotation

{
if (turl)
{
return NO;
}

#ifdef TOUCHTESTDRIVER

[TouchTestDriver startSession:url];

#endif

return YES;

Adding a Mobile App to CloudTest® Manually

If you didn’t use the MakeAppTouchTestable utility, it will be necessary to manually add a
mobile app to CloudTest®.

1. To do so, select Central > Mobile Apps and then click New. The Mobile App form
appears.

2. Enter the app name as it will appear in the drop-down for user selection.
Generally, this will also be the Xcode project name. For the iLabyrinth example,
you will want to enter iLabyrinth copy if you’re also going to also use iLabyrinth.

B) (4d | 48

Name iLabyrinth
Description

Version 3.2

0s i0S

Minimum CS Version 5.0
Supported Device Type Universal
Minimum Device Version

Launch URL soasta-mobile-test-944dc44b-666d-4045-a04c-7b9fe62bsbfb //

iLabyrinth_icon.png =
Icon
Import El

3. Optionally, enter a description and an app version number. Version number will
generally match Xcode project details.

4. Only iOS is supported currently. For this release, TouchTest™ supports iOS 5.0+
versions only.

5. Set the Supported Device Type to Universal (if your tests will include various iOS
devices), or choose iPhone or iPad (whichever applies).

6. Inthe Launch URL field, provide the unique URL Scheme you defined in XCode,
plus any additional arguments relevant to your mobile app.

For example,

soasta-mobile-test-944dc44b-666d-4045-a04c-7b9fe62bdbfb://
keyl=valuel&key2=value2&key3=value3

where soasta-mobile-test-appID:// iS the name of your mobile app including
the :// and additional arguments are in the form
keyl=valuel&key2=value2.

Note: Without a correctly formed Launch URL testing will not happen.

7. Optionally, import an app image for your mobile app to visually represent the
correlation of TouchTest™ Agent with your app.

Supported image types include JPEG, PNG, and GIF. Images can be pre-edited to
the requisite 57 pixels wide by 57 pixels tall. Images that are not cropped will be
shrunk to fit within the requisite dimensions.

8. Click Save to create this mobile app object in CloudTest® .

SOASTA, Inc.

444 Castro St.
Mountain View, CA 94041
866.344.8766

http://www.soasta.com

http://www.soasta.com
http://www.soasta.com

